マイクロ・ナノマシーニングを用いた生体単分子マニュピレーション法の開発

Dvelopment of micro electro mechanical system for single molecule manipulation

研究代表者 東京大学生産技術研究所 産学官連携研究員 久米村百子

[研究の目的]

近年、バイオ MEMS の分野においては、特定 の機能を持つ生体分子をデバイスに導入するこ とによって、機械・電気的デバイスとして利用 しよういう試みがなされている。機能性分子と マイクロ・ナノマシーニングの融合により、ナ ノテクノロジーの目指す高機能性微細構造が可 能になると期待されている。しかし、複数の機 能を持つそれぞれの分子を、デバイス内の任意 の場所に置くためには、物理的に分子を制御す ることが必要と考える。そこで本研究では、マ イクロ・ナノマシーニングによって作製したフ ルイディクスデバイス内で生体分子を単分子に 分離し、微小なピンセットにより捕獲・マニュ ピレーションする方法を確立することを目的と した。

[研究の内容、成果]

マイクロ・ナノフルイディクスデバイスの設計

本研究で提案するマイクロ・ナノフルイディク スデバイスは、幅の異なるチャネルを組み合わせ たデザインを有し、チャネルの構造によって分子 の分離(振り分け)を達成しようとするものであ る。つまり、分子一個が通れるような微小なチャ ネルを作り、これに順々に分子を通過させる。対 象とする分子は、生化学の基礎実験で頻繁に用い られており、購入しやすいλ-DNA(48k bps, Takara) を用いることとした。λ-DNA は直径 2nm、長さ 16µmの高分子であり、分子全体は電気的に負の状 態になっている。 チャネル層の材質には、Poly(dimelylsiloxane) (PDMS)を選択した。PDMS は、無色透明な粘性の 高いポリマーであり、加熱によって硬化するため、 モールディングによりマスターのパターンを転写 することができる。生体分子を扱うマイクロデバ イスの基板として頻繁に利用されている。また、 チャネル内での DNA の駆動方法には、電気泳動 を採用した。DNA は電気的に負に帯電しているた め、陰極から陽極へ泳動させることができる。そ のため、電気泳動のための電極を、ガラス上にパ ターニングすることとした。

マイクロ・ナノフルイディクスデバイスの作製

チャネル層の作製方法を以下に示す。シリコン 基板にレジストを塗布し、ホトリソグラフィによ りチャネルのデザインをパターニングした。Deep Reactive Ion Etching (DRIE)によりチャネルの深さ に相当する距離をエッチングした。これをが鋳型 となる。鋳型のシリコン基板をアセトンで洗浄し た後、PDMS (Dow Corning Toray, Silpot 184)を流し 込み、100℃7分の条件で固化させた。完成した PDMS シートに、円筒形のパンチを使って、試料 をチャネルに導入するためのアクセスホールを開 けた。

電極層の作製方法を以下に示す。(1)ガラス基板 (Matsunami, NEO)をアセトン浴で超音波洗浄、 (2)ネガレジスト(Zeon, ZPN1150-90)を 5000rpm, 60sec. の条件でスピンコート、(3)アルミニウムを 蒸着(50nm)、(4)アセトンに浸し、超音波によりリ フトオフ。 以上の手順で作製したチャネル層と電極層を、 マスクアライナー(ユニオン光学)を用いて、アラ イメントしながら両ウエハの距離を徐々に近づけ、 張り合わせた。作製したマイクロ・ナノフルイデ ィクスデバイスを図1に示す。

図1 マイクロ・ナノフルイディクスデバイス

DNA 分子振り分けの実験方法

全ての実験は、倒立顕微鏡(Olympus, IX-71)のス テージ上で行い、イメージインテンシファイア (Hamahatsu photonics, C9016-1)とカメラ(DAGE MTI, CCD-300-RCX)を接続して画像を取得した。 DNA の様子を観察するために、蛍光染料の YOYO-1(molecular probes)を加えた。YOYO-1の濃 度は、DNA 濃度に対して約 1000 倍とした。

マイクロピペットを使って、チャネル層のアク セスホールに超純水を入れ、チャネルが水で満た されるのを確認したのち、DNA 水溶液 2µL を片 方のアクセスホールに入れた。直流電圧を印加し、 DNA がチャネル内を電気泳動する様子を観察し た。

チャネルサイズの最適化

λ-DNA 一分子ずつをマイクロチャネルに通過 させるため、チャネル幅 800nm から 2µm におい て数種類のマイクロチャネルを作製し、DNA 通過 の実験を行った。幅 800nm のチャネルを用いた場 合は、DNA はほとんど通過しなかった。この原因 は、電気浸透流の影響や、DNA の粘性抵抗などに よるものではないかと考える。幅 1µm×深さ 2µm のチャネルの場合、実験を始めて10分程度はDNA が通過する様子が観察されたが、実験時間が経過 するに従って、DNA がチャネル入り口で留まるよ うになった。これはチャネル表面の電気的状態が 変化し、DNA が阻害を受けているのではないかと 考える。幅 2µm×深さ 4µm のチャネル 10 本を並 列に並べたチャネル層(図 2)を用いた場合、電 気泳動によって DNA 分子を通過させることがで きた。このチャネル層を用いて DNA 振り分けの 効率を評価した。

図2 マイクロチャネル(中央) サイズ:幅2µm×深さ4µm×長さ50µm

DNA 分子の振り分け効率の評価

マイクロ・ナノフルイディクスデバイスを用い た DNA 分子の振り分け効率を、チャネルを通過 する DNA 個数を計測することによって評価した。 この実験に用いたチャネルは、幅の広いチャネル (アクセスチャネル)と狭いチャネル (マイクロ チャネル)から構成されており(図2)、アクセス チャネルは、幅 300µm×深さ4µm、マイクロチャ ネルは、幅 2µm×深さ4µm である。電圧印加に より、DNA が電気泳動することを確認した後、0.5 ~4V の範囲で、アクセスチャネルとマイクロチャ ネルを通過する DNA 個数を数え、比較すること で、本デバイスの分子振り分け効果を評価した。 具体的には、それぞれのチャネルの断面を単位時 間あたりに通過する DNA の個数を計測した。図3 に結果を示す。

図3より、マイクロチャネルを通過する個数は アクセスチャネルを通過する個数より、約20分の 1 に減少していることがわかる。これは、DNA の 電気泳動の流れと、電気浸透流の流れの関係から 生じると考える。DNA は陽極から陰極へ流れるが、 電気浸透流は逆向きである。電気浸透流は、ガラ スなどの表面で起こる流れなので、チャネルの比 面積(面積/体積)が大きくなるほど、効果的にな る。本実験で用いたデバイスの場合、マイクロチ ャネルの比表面積は、((0.002×0.05×2+0.04×0.05 ×2)/(0.004×0.002×0.05mm3)) = 1.5×103mm⁻¹ と 算出される。アクセスチャネルの比表面積は、チ ャネル長さを 200µm とした場合(同様の計算によ り) 253.3mm⁻¹になるため、マイクロチャネルはア クセスチャネルに対して、約 2.5 倍の比表面積を 持つことになる。

図3 単位時間の通過 DNA 個数 上:アクセスチャネル,下:マイクロチャネル

平面電極による DNA 単分子の捕獲

鷲津らは、アルミニウムの平行な電極に高周波 の電圧を印加することによって DNA 分子を伸長 させ、捕獲する方法を報告している [1]。鷲津ら の提案した平面電極では、電圧が直接印加されな い部位があり [2]、電気的にフローティングとな っている。通常、2 本の電極に電圧を印加した場 合、電極からジュール熱が発生し、電極周辺に対 流が生じる。一方、フローティング電極の周辺に は対流は生じないために、水溶液中の DNA が、 対流に巻き込まれて電極から遠ざかることはない。 このデザインを参考に、マイクロ・ナノフルイデ ィクスデバイス内に作り込んだ平面電極間への捕 獲を試みた。

平面電極のギャップ間隔は 10μm とした。 DNA がマイクロチャネルを通過し、電極付近に 達したのを確認して、捕獲用の平面電極に 0.9MV/mm の交流電圧を印加した。図に DNA が電極間に捕獲される様子を示す。DNA 分子は、 伸長しながら片側の電極に付着したのち、電界 によって逆の末端が伸長し、最後に電極間に付 着した。

図4 電極間に固定される単分子 DNA

マイクロ・ナノフルイディクスデバイスと微小 ピンセットによる DNA 分子の捕獲実験

マイクロ・ナノマシーニングにより、微小ピン セットを作製した。ピンセットについても、一部 がフローティングになるように設計した。ピンセ ット作製で行う主なプロセスは、微細パターン形 成のためのホトリソグラフィー, SOI 基板のバル ク層を高いアスペクト比で加工するための DRIE、 ピンセット先端を鋭角にするための異方性エッチ ングである。詳細な微小ピンセットの作製方法に ついては省略する [3]。ピンセットをマイクロ・ ナノフルイディクスデバイスのホールに挿入し、 チャネルで振り分けた DNA 分子の捕獲を試みた。 マイクロチャネルから数十µm の距離にホールを 設け、微小ピンセットをマニュピレータを用いて アプローチした。ピンセットの先端は、顕微鏡に より観察することができる。DNA がチャネルを通 過するのを確認してピンセットに交流電圧を印加 すると、DNA はピンセット先端には集まらず、上 方(z 軸方向)に流れる様子が観察された。これ は、ピンセットの上方も水に浸されているため、 電界による水流の向きが複雑になっているためと 考える。マイクロ・ナノフルイディクスデバイス 内では、チャネル高さが 4µm と固定されているた めに、DNA の垂直方向の動きはほとんど制限され る。しかし、ホール内では DNA の動きは三次元 になるために観察することも困難であった。

[今後の研究の方向、課題]

本研究では、マイクロ・ナノフルイディクスデ バイス内で DNA 分子を単分子に効果的に振り分 けることに成功した。また、デバイス内で単分子 を捕獲することができた。しかし、立体的な微小 ピンセットによる単分子の捕獲には至らなかっ た。これを達成するためには、ピンセットを挿入 する部分を数µm までに小さくし、DNA の動きを できるだけ制限する必要があると考える。

[文献]

 M. Washizu, "Electrostatic Manipulation of DNA in Microfabricated Structures", IEEE Trans. Ind. Appl., 26, pp.1165-1172, (1990).

- [2] M. Washizu, O. Kurosawa, I. Arai, S. Suzuki, & N. Shimamoto, "Applications of electrostatic stretch-and-positioning of DNA", Ind. Appl. IEEE Trans., 31, pp.447-456, (1995).
- [3] G. Hashiguchi, T. Goda, M. Hosogi, K. Hirano, N. Kaji, Y. Baba K. Kakushima, and H. Fujita, "DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers" Anal. Chem., 75, pp.4347-4350, (2003).

[成果の発表、論文等]

マイクロチップを用いた単分子λ-DNAの捕獲, 久米村百子, 榊直由, Christophe Yamahata, 橋 口原, Dominique Collard, 藤田博之, 第15回化 学とマイクロ・ナノシステム研究会, 2007年5 月25,26日, 東北大学