スーパープリズム光学系による超小型分光システム

Ultrasmall spectrometer system based on superprism optics

1061016

研究者代表 横浜国立大学 教授 馬場 俊彦 (助成金受領者)

- 1 -

[研究の目的]

近年, データ通信需要の大幅な増大に対応す るため、波長分割多重光通信において高性能分 光フィルターが要求されている. またライフサ イエンスにおける生体分析や、環境汚染物質の 検出にも精密な分光が必要になっている.しか し一般に分光器は大型で高価であり、分析には 費用や時間がかかる.一方、本研究の分光シス テムは極めて小型で、これらの問題を解決する 可能性をもつ. 将来, ナノプリント技術等でこ のシステムが簡便に作製されるようになれば, 各家庭の光通信モデムに搭載されるフィルター, 様々な現場での使い捨てセンサーなどとして利 用されるようになると期待される.

本研究が採り上げるスーパープリズムとは, 多次元的な微細周期構造(フォトニック結晶, 以下, PCと略す)の中で起こる特異な分散に由 来する光の負の屈折現象を指す. 1998年NECに より発見され、分光や結像を大きく変える画期 的な現象として世界的に研究が行われた.しか し種々の問題のために,最近まで大きな進展が 見られなかった.筆者は構造とシステム構成に 独自の提案を行うことで問題を解決し,本研究 開始前に高性能な分光が実現される見通しを得 た. そこで本研究ではその実証に取り組んだ.

[研究の内容,成果]

(1) 分光システムの概要

提案した分光システムを図 1(a)に示す. ここ では波長によって負の屈折角が大きく変化する スーパープリズム効果と, 負の屈折によって集 光するスーパーレンズ効果を組み合わせている.

これにより、回折格子と反射レンズを用いる従 来の分光器のサイズや分解能の限界を打破する. 図 1(b)は時間領域有限差分 (FDTD) 法による光 波シミュレーションである. スーパープリズム とスーパーレンズには,入出射面での反射を抑 える最適化された構造が付加された円孔配列 PC を仮定している. 入射された光が負の屈折を

図 1 提案した分光システム. (a) 基本構成, (b) FDTD 法による光伝搬シミュレーション.

受けて偏向され, さらに負の屈折で集光される 様子がわかる. この理論解析からは, 全体の分 光システムサイズが 1mm 角と小さくても, 例え ば波長 1.55µm に対して分解能 0.4nm が得られ ることがわかっている. より小さなデバイス, 例えば後述するような 100µm 角以下の場合は 分解能が低下するが, それでも 10nm 程度が分 解できると予想される.

(2) Si 材料への PC の作製技術の確立

本実験における PC の基本構造は、光導波薄 膜に 450nm 周期の円孔を配列させた PC スラブ である.申請者は既に電子ビーム描画と誘導結 合プラズマエッチングによる Si材料への構造作 製技術を確立しつつある.本研究では、従来よ り高い 50kV の加速電圧を有する電子ビーム描 画装置を新たに導入した.これにより、後述す るような複雑な突起パターンが設計に忠実に得 られるようになり、円孔の真円性と均一性も大 幅に向上した.このパターンを Si 系材料にエッ チング転写したときの円孔の側壁粗さは、標準 偏差値で 3nm 以下と評価された.

(3) スーパープリズム効果の観測

スーパープリズムの負の屈折は,最初の報告 以降から観測が非常に不明瞭であった.これは, PC 界面で反射損失や散乱損失が大きいことに 原因があった.本研究代表者はこの点を指摘し, 図 1(a)の突起構造が損失低減に有効なことを見 出していた.本研究では,まずその作製と負の 屈折効果の明確な観測に取り組んだ.

図2に結果を示す.電子ビーム描画の改良に より,突起構造が良好に形成されているのが(a) よりわかる.これに垂直から10°傾けて光を入 射させると,(b)のようにPC中では入射とは逆 方向の負の屈折光が明瞭に観測された.ここで は光が素子上方から見えているが,これは上方 への放射が起こる波長を意図的に選んだためで ある.より長波長側で放射は消えるが, PC を透 過する光からも負の屈折が確認された.(c)にそ の屈折角の分散をまとめる.ある円孔直径 2rの 試料に対して,60nmの波長変化に対して15°の 角度変化が評価され,これは FDTD 法による理 論値とよく一致した.2rを変えると動作波長は シフトし,これも計算結果とよく一致した.こ れらの結果は,スーパープリズム効果を光波帯 で明確に評価した初めての例である.

図2 スーパープリズム効果の観測. (a) 作製 した PC と突起構造, (b) 負の屈折の様子を 表す伝搬光の近視野像, (c) 負の屈折角の実 験プロットと FDTD 法による理論曲線.

(4) スーパーレンズ効果の観測

スーパーレンズ効果はスーパープリズム効果 以上に世界的に研究されてきたが、こちらも光 波帯での観測は困難で、全てマイクロ波帯の研 究であり、これも界面での損失が原因であった. これについても本研究代表者は図 1(a)に示す変 形孔が有効なことを見出し、本研究開始前に集 光の様子を確認する初期実験に成功していた.

本研究では変形孔を含む PC の作製精度を高 め、さらに上記の放射条件を考慮することで、 より明確に集光特性を評価することに成功した. その様子を図 3 に示す. FDTD 法で設計された 変形孔が良好に形成されている.また,放射条 件を利用することで集光の様子が明確に観測さ れている.さらに光源を複数個用意したときに は、複数個の焦点が形成されることも確認され た.これにより、界面に対して物体の対象像を 結像させるという、スーパーレンズの最大の特 長の一つが実証されたことになる.

スーパープリズムと同様,このレンズ効果も 光波帯で明確に評価した初めての例である.

図 3 スーパーレンズ効果の観測. (a) 作製した PC と変形孔構造, (b) 集光 の様子を表す伝搬光の近視野像.

(5) 分光システムの原理実証

スーパープリズムとスーパーレンズを組み合 わせた図1の分光システムを実際に作製した. その様子を図 4(a)に示す. プリズムとレンズに は前述の損失低減構造が配置されている. レン ズの出射端は曲線形状になっているが、これは 色収差を補正するためである. レンズは出射導 波路に直結され、出射光が明確に分離されるよ うにした.(b)は入射波長を変化させたときの出 射光のシフトの様子である.明瞭な分光動作が 確認された.波長分解能は,長波長側では11nm でほぼ一定であったが, 短波長側では 15~30nm と低下した. これはスーパープリズムの波長依 存性によるものである. 短波長側の出射端を伸 ばして,光ビームを分離する長さをとれば,分 解能を均一化することは可能と考えられる.ま た前述のように,この分解能は素子サイズで制 限される. ここに示した素子は、入出射導波路 を除く実効的なサイズが80µm×100µmときわめ て小さく, FDTD 計算で予測された分解能とよ く一致している. したがって,素子を 1mm 角程 度まで大型化すれば、分解能を 0.5nm 以下に向 上させることは可能と考えられる.

(6) 物性センサーの基本動作確認

本助成期間では、図4の素子を用いたセンシ ングの実験は間に合わなかった.ただしより手 軽な基礎実験として、同様の PC スラブに微小 共振器を形成し、その共振波長を周囲媒質によ ってシフトさせることを試みた.その結果、空 気中に比べてメタノール、アセトンといった有 機溶媒に PC を浸したときには、円孔部分の屈 折率上昇によって共振波長が明確にシフトした. そのシフト量は180nm/Δn (Δn は屈折率変化量) となり、波長分解能を 0.1nm に高めれば、10⁻³ 以下の屈折率変化が検知できることがわかった.

図4微小分光システムの実証. (a) 作製した素 子の全体図, (b) 出射導波路端の光のシフト.

[今後の研究の方向,課題]

スーパープリズムとスーパーレンズの基礎技術を確立し,複雑な分光システムの動作実証に も成功した.今後は波長分解能を高めると共に, 同素子での媒質センシング動作の実証,微小分 光センシングシステムへの展開が期待される. 高分解能が低損失かつ簡易な作製手法で実現で きるかが様々な応用への重要な課題となる.

[成果の発表,論文等]

- T. Matsumoto, K. Eom and T. Baba, "Focusing of light by negative refraction in photonic crystal slab superlens on SOI substrate", Opt. Lett. **31**, 2776 (2006).
- T. Matsumoto, T. Asatsuma and T. Baba, "Experimental demonstration of wavelength demultiplexer based on photonic crystal negative refractive components", Appl. Phys. Lett. (2007, to be submitted).
- T. Matsumoto, T. Asatsuma and T. Baba, "Light transfer, parallel focusing and demultiplexing using negative refraction in photonic crystal",

Quantum Electron. Laser Sci., QWH7 (2007).

- S. Kita, K. Nozaki and T. Baba, "Refractive Index sensing utilizing photonic crystal nanolaser array", Int. Symp. Comp. Semicon., (2007, submitted).
- 松本崇,朝妻智彦,馬場俊彦,"フォトニッ ク結晶スーパーレンズの光伝搬特性観測 (IV) 複数の光源の集光",応用物理学会秋 季講演会, 30p-ZD-6 (2006).
- 松本崇,朝妻智彦,馬場俊彦,"フォトニッ ク結晶スーパープリズムとスーパーレンズ を用いた波長フィルタ(II)分光特性の観測", 応用物理学会秋季講演会, 30p-ZD-7 (2006).
- 朝妻智彦,松本崇,馬場俊彦,"フォトニック 結晶スーパーレンズの光伝搬特性観測(V) イメージの転送",春季応用物理学会講演会, 28a-ZB-7 (2007).
- 松本崇,朝妻智彦,馬場俊彦,"SOI 基板上のフォトニック結晶スーパープリズムの光偏向特性観測(II)入出射端構造の最適化", 春季応用物理学会講演会,28a-ZB-8 (2007).
- 松本崇,朝妻智彦,馬場俊彦,"スーパープ リズムとスーパーレンズを用いた波長フィ ルタ(III)レンズ長の最適化",春季応用物理 学会講演会,28a-ZB-9 (2007).
- 北翔太,野崎謙悟,馬場俊彦,"フォトニック 結晶微小レーザアレイを利用した屈折率センサの提案",春季応用物理学会講演会, 27p-ZB-8 (2007).
- 北翔太,野崎謙悟,馬場俊彦,"フォトニッ ク結晶微小レーザアレイを利用した屈折率 センサ(II)素子動作の観察",秋季応用物理 学会講演会 (2007,発表予定).
- 朝妻智彦,松本崇,馬場俊彦,"フォトニッ ク結晶スーパーレンズの組み合わせによる 収差補正",秋季応用物理学会講演会(2007, 発表予定).

- 4 -