最適設計 LED 照明による血行の明瞭化と定量化

			5 1	, c						
										00
-		200	01013							
	研究代表者	千葉大学 フロン 研究開発センター	ティアメデ	ィカル工学	教	授	73	石	秀	昭

Clarification of the Blood Circulation by Optimally Designed LED Illuminant

[研究の目的]

.....

小腸などの管腔臓器における切除と再建手術 の際,切除範囲の正確な健常性の判定が重要と なる。この判定は,目視下における疾患領域の 把握や血流の走行を判定材料とする臓器の色の 違いに基づいて行われるが,識別部位の色の違 いはわずかにしか現れないため,医師の経験と 感覚に大きく左右される。そのため,目視診断 に対する支援技術の開発が求められている。

そこで本研究では、照明光のスペクトルの最 適化により注目部位の明瞭化を目指す。この際 用いる光源として LED (Light Emitting Diode) を想定する。近年様々な分光特性をもつ LED が開発されつつあり、また、コンパクト性、耐 久性の点でも優れている。手術室にも LED 光 源を導入する動きがあり[1]、色温度の調節機 能もあるが、前述の目的に対して最適化された パラメータ設定が行えるわけではない。また研 究分野では、従来のハロゲンランプと白色 LED 光源間の演色性評価[2] などはあるが、 積極的に診断や治療を支援するまでの最適化は 行われていない。

本研究では、まず様々な血行状態のブタ小腸 の分光反射率を取得し、この結果と様々な LED 光源の発光スペクトルデータを基に、最 適な LED 光源をシミュレーションにより設計 し、最適光源の効果を色差によって予測する。 [研究の内容,成果]

1. 方法

分光特性が既知な数種類の LED 光源の重み づけ組み合わせにより目的関数を最大にする最 適光源を設計する。Fig.1 に最適化の流れを示 す。まず,各 LED 光源 $E_n(\lambda)$, n=1,…,N に対 して重み $0 \le k_n \le 1$, n=1, ..., Nを与え,式(1) により合成して光源 $E_{op}(\lambda)$ を作成する。ここで, N は LED 光源の種類数とする。

$$E_{op}(\lambda) = \sum_{n=1}^{N} k_n E_n(\lambda) \tag{1}$$

Fig. 1 Flow chart of illumination optimization

ただし, $E_n(\lambda)$, n=1, … N はそれぞれピーク 波長のエネルギーで正規化された特性とする。 重み k_n を最適に設定し, 最適光源 $E_{op}(\lambda)$ を設 計する。

作成した光源の分光放射輝度を $E_{op}(\lambda)$, 観察 対象の分光反射率を $R(\lambda)$ とすれば, 観察さ れる色光はこれらの分光積 $E_{op}(\lambda)R(\lambda)$ で表さ れる。これに対し,人は分光特性の異なる3種 類の光受光器で色を知覚する。この知覚される 色は三刺激値と呼ばれる。三刺激値は,色知覚 の均等性が十分でないため,さらに CIE の均 等色空間 CIELAB に変換する。

血行正常時と不良時の血色の違いを強調する 光源が良いと考えられるため、血行正常時と不 良時の CIELAB 空間上の色差[3]を大きくす るという条件を光源 $E_{op}(\lambda)$ に与えることとす る。つまり、光源 $E_{op}(\lambda)$ 下における、血行が 正常時の分光反射率から算出した測色値 L_{n}^{*} , a_{n}^{*} , b_{n}^{*} と、血行が不良時の分光反射率から算 出した測色値 L_{p}^{*} , a_{p}^{*} , b_{p}^{*} を利用して、式(2) に基づき算出した色差 α が大きくなる光源を 好ましいと考える。

$$a(E_{op}(\lambda)) = [(L_n^* - L_p^*)^2 + (a_n^* - a_p^*)^2 + (b_n^* - b_p^*)^2]^{1/2}$$
(2)

一方,従来,手術は無影灯の白色光源下でな されてきたことから,光源の色が白色光源から 大きくずれるのは慣れの観点から好ましくない。 これらを考慮し,作成した光源 $E_{op}(\lambda)$ 下にお いて完全拡散物体である白色板を観察したとき の色が,従来の白色光源下の色になるべく近く なる光源が好ましいとする条件を追加する。具 体的には D65 光源を従来光源として扱い,白 色板の光源 $E_{op}(\lambda)$ 下における測色値 $L_{w,D65}^{*}$, $a_{w,D65}^{*}$,式(2)と同様に,それぞれの差の 2 乗和の平方根によって算出した色差 β が小さ い光源を好ましいと考える[4]。

以上2つの観点に基づき,血行正常時と不良

時の色差 *α* を最大かつ, 白色板色差 *β* を最小 とするため

$$c(E_{op}(\lambda)) = \alpha(E_{op}(\lambda)) - \beta(E_{op}(\lambda))$$
(3)

を目的関数として, c が最大となるように Nelder-Mead の simplex 法[4] を用いて係数 k_n を最適化し最適光源を作成する。

2. 実験および考察

ブタ小腸を対象に臓器の分光反射率データの 収集を行い,事前に想定した仮想 LED 光源と 実測 LED 光源の特性を利用して最適光源を設 計した。また,最適光源の効果の評価には,算 出した色差を利用した。

2.1. データ収集

ブタ小腸を対象に臓器の分光反射率データの 収集を実施した。分光反射率測定は Ocean Optics 社製の小型分光器 USB2000 を用いて 行った。測定にあたっては国際照明委員会 (CIE)の推奨する幾何学的条件[5]に基づき, 対象物体に対してハロゲンランプを斜め 45°に, プローブを垂直方向に固定した。さらに,小腸 とプローブ先端の距離は 10 mm となるように 固定した。Fig. 2 にプローブと光源の外観図を 示す。

ブタ小腸を固定し、ある注目点について、近 傍の腸間膜血流が正常な「normal」、一部の血

Fig. 2 External view of a probe and an illuminant

Fig. 3 Intestine measured by a spectral photodetector. Blood flow is blocked at left in the picture

流を遮断した「level 1」, 遮断開始から4分後 の「level 2」, さらに遮断した「level 3」の4 つの血行状態につき10~50回測定した。血行 状態「level 1」の分光反射率測定環境をFig.3 に示す。

その結果,ヘモグロビンの吸収特性[7] に基 づき,長波長側で各遮断レベルによる分光反射 率波形の大きな変化を確認した。分光反射率結 果を Fig.4 に示す。

Fig. 4 Spectral reflectance of a small intestine

2.2. 想定する LED の特性

LED 光源の設計は2つのケースについて 行った。ひとつは市販の LED の分光特性を適 当な関数で近似したもの,もうひとつは,3種 類の分光特性をもつ実在の LED 照明を用い, その発光量を調節したものである。以下では, 前者を仮想 LED,後者を実在 LED と呼ぶこと にする。

仮想 LED 光源データは,実在する LED 光 源を参考に,ピーク波長が 465,525,570, 590, 605, 650 nm の6 種類の LED 光源波形を ガウス関数で作成した。仮想 LED 光源波形を Fig.5 に示す。

実測 LED 光源データは,イマック社製の LED 装置 IHRGB-120-MIX を実測したもので ある。ピーク波長が 468,520,636 nm で発光 色が青,緑,赤の3種類の強度変更が可能な LED 光源である。分光放射輝度計を用いてス ペクトルをそれぞれ測定し,さらに各光源の最 大強度を1となるように正規化を行った。この 波形を Fig.6 に示す。

Fig. 5 Intensity of the hypothetical LED illuminants

Fig. 6 Measured intensity of the commercial LED

2.3. 評価法

作成した最適光源下の血色の違いを,式(1) から算出した色差から評価した。比較のために, D65 光源下の場合の色差も算出した。

2.4. 結果

Fig.7 に仮想 LED 光源のスペクトル形状を 破線で,また算出された最適光源のスペクトル を実線で示す。さらに Fig.8 に実測 LED 光源 における結果を Fig.7 と同様に示す。血行状態 によらず最適光源波形は同様の結果を得た。ま た,白色板の色差は0.1以下となりカラーパッ チからも白色性を保持していることを確認した。 仮想 LED 光源では,分光反射率の差が小さい 波長を強調する LED 光源の係数が0となった。 また,仮想 LED 光源と実測 LED 光源のどち らにおいても,長波長側にピーク波長を持つ LED 光源の係数が最大値となった。

Fig. 7 Spectral intensity of the optimal combination of hypothetical LEDs

次に,D65 光源および2種類の最適光源下 での,小腸の各遮断レベルの色差を Table 1 に 示す。一般に人間は色差3以上で色の違いを知 覚可能と考えられている。最適光源下では,色 差3に近い値をもつD65 光源よりも大きい色 差を得た。

Fig. 8 Spectral intensity of the optimally weighted commercial RGB LEDs

Table 1 Color differences between normal and hemostatic small intestines under D65 and two optimal illuminants

Level	D65	Hypothetical LED	Commercial LED
1	3.0	4.3	3.9
2	4.7	6.9	6.3
3	5.2	7.8	7.1

2.5. 考察

仮想 LED 光源による最適光源は,実測 LED 光源よりも大きな色差を得た。ピーク波長 650 nm の仮想 LED 光源は,ピーク波長 636 nm の 実測 LED 光源よりも大きな半値幅を持ち長波 長側にピーク波長があるため,小腸の分光反射 率の長波長側の違いをより強調したためと考え られる。実測 LED 光源の種類数を増加させる ことにより,実測 LED 光源による最適光源で さらなる明瞭化が可能と考えられる。

3. 結論

様々な血行状態のブタ小腸の分光反射率を取 得し,この情報と仮想 LED 光源と実測 LED 光源を利用して LED 光源の最適化を試みた。 色差算出結果から,最適光源により,通常光源 よりも大きい色差が生じ,明瞭化効果が期待で きることを確認した。

[今後の研究の方向,課題]

今回の研究で最適化手法を確立することがで きたが、最適パラメータの決定のためには、サ ンプルが不十分である。そこで、臓器の分光反 射率データの増加、光源データの拡充の後、あ らためて最適化を行う。この際、ブタだけでな く、ヒトを対象としたデータ収集も必要である。 さらに、マルチバンドカメラを用いて臓器の分 光反射率画像を収集し、照明を替えたときの見 えの変化もシミュレーションし、空間情報も含 めて最適照明の効果を検証する。

また,今後の研究開発構想として,外科医の 術中診断支援のみならず,インテリジェント手 術照明をカメラ撮影と連動させることで,対象 物の色強調の他に,赤外光の利用やカメラとの 組み合わせによる不可視情報の可視化や色の定 量評価などを考えている。

[成果の発表, 論文等]

- [1] 村井希名:最適 LED 光源設計による血行の明瞭
 化のための基礎検討,2011年情報フォトニクス研
 究会関東学生発表会,OI-4,慶応大学.(2011.3.3)
- [2] 村井希名,川平洋,羽石秀昭:最適LED光源設計による血行の明瞭化のための基礎検討,日本写真学会年次大会予稿集,pp.136-137,千葉大学.(2011.5)
- [3] 村井希名,川平洋,羽石秀昭:血行の明瞭化のた めのLED光源設計,日本医用画像工学会年次大会, OP9-3,国際医療福祉大学.(2011.8)

[参考文献]

- [1] 奥村幸康:特開 2008-258169
- [2] C. Li, M. Strabl, S. Rauchenzauner, et al: Eva-

luation of LED illumination for dental instruments. Lighting Research and Technology 41: 89–97. (2009)

[3] 大田登:色彩工学, 電機大学出版社, 東京, 127-133 (1993)

- [4] 羽石秀昭、山田智子、津村徳道、et al:ファイバスコープ内視鏡の光源分光特性の最適設計.光学第27巻第3号:164-171.(1998)
- [5] W.H. Press, B.P. Flannery, S.A. Teukolsky: Numerical Recipes in C, 技術評論社, 東京, 295-299 (2006)
- [6] 三宅洋一:分光画像処理入門,東京大学出版会, 東京, 39-42 (2006)
- [7] 田村俊世,山越憲一,村上肇:医用機器I,コロ ナ社,東京,83-86 (2006)