モバイル環境での頑健な超音波モーションキャプチャシステムの開発

		2011010						
E.	研究代表者	北海道大学大学院 情報科学研究科	教	授	杉	本	雅	則

A Robust Ultrasound Motion-capture System in Mobile Environments

[研究の目的]

モーションキャプチャシステム(以下 MCS と略す)は、CG やスポーツ科学等,幅広い分 野で使用されている。しかし,現在市販されて いる光学および磁気方式の MCS は、大変高価 (数百万~数千万円)である、機材が環境に固 定され限られた場所でしか使用できないなど, いくつかの課題がある。本研究では、申請者が 独自に開発した高精度超音波測距技術を利用し、 実用性能を満たしつつ極めて安価でかつポータ ブルな MCSを開発する。多くの人が容易に入 手,利用できる MCS を実現することで、多様 な学術領域、産業分野での波及効果を期待でき る。さらに、本 MCS 実現を通して確立される 個々の技術は、関連分野での問題解決の有用な 知見を与えると考える。

[研究の内容,成果]

1. 研究概要

我々のグループでは,超音波を用いた測距手 法を構築しその評価を行ってきた。位相一致法 (Phase Accordance Method: PAM) [1] と呼 ばれる手法では,2つの異なる周波数の超音波 を重畳し,それらの位相差が0となる点を時刻 基準点として,送信機側で検出する。3m 測距 において標準偏差0.032 mm という極めて高い 性能を示すことが,これまでの実験で確認され ている。この性能は、狭帯域超音波トランス デューサを用いた測距としては我々が知る限り 世界最高レベルである。また、本手法を拡張す ることにより、ロボットトラッキングシステム [2] やドップラーシフト補償による速度と測距 の同時計測が可能な拡張位相一致法 [3] を提 案した。

超音波を用いた3次元位置推定は、三辺測 量(trilateration)の原理に基づく。GPSの例 から明らかなようにターゲット位置の推定精 度は、(1)距離計測精度および(2)センサ (GPSの場合は人工衛星)の空間的配置に依存 する。図1に示す通り、センサが空間的に分散 している場合は、GDOP(Geometric Dilution of Precision)値が低くなり高い精度が得られる (good GDOP)が、集中している場合はGDOP が高くなり精度は悪くなる(poor GDOP)。し かし、センサを空間中に分散すると、システム が大規模になり設置の容易さや可搬性が乏しく なるという問題がある。

我々のグループで構築した3次元位置認識シ

図1 長いベースライン(右)と短いベースライン(左)

ステム [4][5] は,センサ間の基線長を小さく することで,コンパクトな実装かつ一定レベル の精度を実現した。しかし,以下の点が問題で あった。

●超音波トランスデューサの位相特性

超音波トランスデューサは指向性を持ってお り,超音波の入射角によって位相特性が変化す る。提案測距手法は位相差を時刻基準点とする ため,位相特性の変化は測距の誤差に直結する。

 poor GDOP による3次元位置認識精度の 限界

GDOP 値が高い場合,測距の小さな誤差が3 次元位置認識の大きな誤差に増幅される。特に, 距離方向(z方向)と鉛直な面(xy平面)で の誤差が極めて大きくなる。

そこで、本研究では以下の2つの方法を用い ることにより、高精度かつコンパクトな3次元 モーションキャプチャシステムを提案した。

- ●超音波トランスデューサの位相特性の補償
- ●単眼カメラと超音波による深さ方向の計測の統合

本研究では,複数の入射角での超音波トラン スデューサの位相特性を計測し,スプライン関 数によって位相補償平面を構築する。カメラに よって得られるターゲットの位置(カメラを原 点とするターゲットの方向)により,超音波測 距の補正を行うと同時に,それと鉛直な面での 誤差を小さくできると期待される。

2. 提案手法

2.1 カメラと超音波による 3D 位置認識

図2において、カメラと超音波受信機の基線

図2 カメラと超音波による3次元位置認識の概要

長を*l*, カメラの焦点距離を*f*, ターゲットの カメラ画像での位置を (x_i, y_i) , 超音波測距に より計測されたターゲットまでの距離を*d*と する。このとき, ターゲットの位置(x, y, z)は以下の3つの式から求めることができる。

$$\frac{x_i}{f} = \frac{x}{z}, \quad \frac{y_i}{f} = \frac{y}{z}, \quad x^2 + (y - l)^2 + z^2 = d^2 \quad (1)$$

2.2 拡張位相一致法

拡張位相一致法は, TOF (Time of Flight) に基づく測距手法である。拡張位相一致法で用 いられる送信信号は, 図3に示すように2つの 送信波から構成される。1番目の送信波sd(t) は, 2つの正弦波で構成されるビート信号の1 周期分であり,以下の式で表される。

$$s_d(t) = a_1 \sin(\omega_1 t + \phi_1) + a_2 \sin(\omega_2 t + \phi_2)$$

ここで a_i, ω_i, ϕ_i (i=1, 2) はそれぞれ,振幅, 角周波数,位相である。1周期分の信号なので, 2つの正弦波の位相差が0となる点は唯一つで ある。受信機側では,信号受信中の時刻 t_w で 検波を行うと,時刻基準点(epoch)までの時 刻 t_e は以下のように表すことができる(詳細 は[1]を参照のこと)。

$$t_e = -\frac{\phi_1 - \phi_2}{\omega_1 - \omega_2}$$

超音波送受信機間の時刻同期が取れていれば, 時間 $t_w + t_e$ に音速をかければ距離が求まる。し かし,移動体の場合はドップラーシフトにより,

角周波数が変化する。そこで、以下の式で表さ れる2番目の送信波 *s*_v(*t*)を用いて、ドップ ラーシフト推定を行う。

 $s_v(t) = a_1 \sin (\omega_0 t + \phi_0)$

詳細は [3] に譲るが,提案手法ではドップ ラーシフトによって,送信波の振幅は変化しな いことに着目して,ドップラーシフト量を求め る。評価実験では, $\omega_0 = 40.0 \text{ kHz}, \omega_1 = 39.75 \text{ kHz}, \omega_2 = 40.25 \text{ kHz} とした。実験結果から,$ フーリエ変換等従来手法に比べて極めて高速かつ高精度な推定が行えること,ドップラーシフト補正した角周波数を用いることにより,静止時とほぼ同程度の精度で時刻基準点が求まることを確認できた。

2.3 超音波トランスデューサの位相特性とその補 正

超音波トランスデューサはその指向性により, 信号の入射角に依存して振幅および位相の特性 が変化する。特に拡張位相一致法は2つの正弦 波の位相差に着目して距離計測を行う手法であ るため,位相特性の変化は測距の誤差となるこ とを意味する。そこで,決められた距離からの 送信信号に対し,入射角を変えつつ測距を行う ことで,位相特性を計測した。

超音波送信機および受信機(日本セラミック 社 T40-16 および R40-16)の設置は以下のよ うに行った。超音波受信機の位置は,三脚を用 いて高さ 1,000 mm から 1,600 mm まで 30 mm 刻みで変更する。一方,超音波送信機は高さ 1,300 mm に設置された電動スライダ(Oriental Motor 社,SPVL8M150UA)に装着され,水 平方向に -400 mm から 400 mm の間を 40 mm 刻みで移動することで位置を変更する。送 受信機間の距離は 1,500 mm である。よって, 信号の入射角が水平方向±11.3 度,鉛直方向 ±8.5 度の範囲で 441 点での計測を行われた。 各計測点での計測回数は 30 回であった。測定 結果から得られた標準偏差は 4.32×10⁻³ rad と

図4 超音波測距にスプライン関数を適用することにより 求めた位相補間曲面

なり,精度の高い位相特性の計測が行われたこ とが分かる。

次に,離散的に得られた計測値に対し, Bス プライン関数を用いて補間曲面を生成した。そ の結果を図4に示す。

カメラと超音波受信機は基線長 *l* だけ離れて おり,よって図2のα,βは超音波受信機への正 しい入射角ではない。そこで以下の手順で受信 機への超音波の入射角を求めることで,位相特 性補正を行う。

1. 式(1)を用いて

$$\alpha = \tan^{-1} \frac{x}{z}, \quad \beta' = \tan^{-1} \frac{y-l}{\sqrt{x^2+z^2}}$$
 を求める

- α およびβ'を用いて位相特性補正を行い, dを更新する
- 3. *d*の変化が閾値以下になれば終了し、そうでなければ1. に戻る

3. 評価実験

3.1 実験設定

提案手法のモーションキャプチャシステムと しての評価にあたり、その 3D トラッキング性 能を確認するため、まずは以下の2つの実験を 実施した。

- 静止状態実験:位相特性補正なし(w/o comp.)および補正あり(w/ comp.)
- トラッキング実験:速度 0.1 m/s および
 1.0 m/s, それぞれ補正なしおよび補正あり

-21 -

実験1では,前節で述べた超音波トランス デューサの入射角による補正の効果を調べる。 実験2では,移動体の速度を変えつつ,提案手 法のトラッキング性能を評価する。

図5に実験設定の概要を示す。信号処理基板 の MPU からは,超音波送信センサおよびカメ ラ(Point Grey 社, Firefly MV, 1,328×1,048 pixel)に対してトリガ信号が送られ,超音波 信号の送信および画像の取得が行われる。超音 波受信センサで受信された信号は信号処理基板 上の FPGA で高速処理され,測距結果が出力 される。一方,赤外線フィルタを介して得られ たカメラ画像は PC に送信される。PC 上では sub pixel レベルの輝点抽出が行われ,測距結 果と式(1)を用いてターゲット(超音波送信 機)の3次元位置が求められる。なお,輝点抽 出とカメラパラメータの補正には,OpenCV に付属ライブラリを使用した。

位相特性の計測と同様,超音波送信機は電動 スライダに装着された。また,図5に示すよう に送信機周囲の3個の赤外線LEDは、その重 心が送信機の位置と一致するように配置された。 カメラと超音波受信センサの基線長は、27.5 mmである。

3.2 静止状態実験

前節の位相特性での計測位置とは異なる位置 にターゲットを配置し、その3次元位置を測定 した。送受信機間の距離は1,900 mm である。 実験の結果を、表1に示す。計測位置数は8ヵ 所、各計測位置での計測回数は30 回である。

表1 静	止状態での	3次	マ元位置	冒認識結果
------	-------	----	------	-------

	x-axis	y-axis	z-axis	3D error
RMSE (mm) without compensation	0.92	0.30	2.52	2.70
RMSE (mm) with compensation	0.85	0.28	0.85	1.24

表2 移動状態での3次元位置認識結果(0.1 m/s)

	x-axis	y-axis	z-axis	3D error
RMSE (mm) without compensation	1.01	0.31	2.28	2.51
RMSE (mm) with compensation	0.90	0.29	0.74	1.20

表3 移動状態での3次元位置認識結果(1.0 m/s)

	x-axis	y-axis	z-axis	3D error
RMSE (mm) without compensation	0.95	0.32	2.76	2.93
RMSE (mm) with compensation	0.93	0.34	1.34	1.66

表1から明らかなように, 位相特性の補正を行 うことにより, RMSE (root means square error:平均2乗誤差)の改善が確認できた。

3.3 トラッキング実験

図5に示すように、ターゲットがカメラの光 軸との鉛直な面上を0.1 m/s、および1.0 m/s で移動する場合の実験結果を表2および表3に 示す。ターゲットは電動スライダ上で往復運動 を行い、それぞれ179回および64回の計測が 行われた。

上記の表から、ターゲットトラッキングの場 合は、静止状態よりも RMSE、ともに悪化が 見られるものの、位相特性補正を行うことでい ずれも 2 mm 未満に抑えられている。静止状態 実験およびトラッキング実験で得られた結果の 累積分布関数 (cumulative distribution function: CDF) および 90 パーセンタイルでの各々 の値を、図 6 に示す。位相特性補償を行った結 果、静止状態、0.1 m/s および 1.0 m/s におけ る 90 percentile での値は、それぞれ 2.92 mm、 3.63 mm、および 7.23 mm であった。

図6 静止状態および移動状態位置認識における累積分布 関数

[今後の研究の方向,課題]

これまでの研究を踏まえた結論と今後の課題 は以下のようにまとめられる。

 コンパクトでロバストな3次元トラッキン グ手法

基線長が短い (27.5 mm), つまり GDOP 値 が高いにも関わらず、極めて高精度の3次元位 置推定が実現できた。従来の無線信号による三 辺測量では基線長が短い場合。図1に示したよ うにターゲットまでの距離方向の精度が高くて も、それと直交する面での精度が悪化する可能 性がある。逆に、ステレオカメラでの3次元位 置認識では基線長が短い場合、ターゲットまで の測距精度が悪化する。提案手法は、高精度な 超音波測距技術を用い、カメラおよび超音波計 測の特徴を生かすことによって高精度な3次元 認識を実現したと言える。また、基線長を短く できれば、計測装置をコンパクトに設計するこ とが可能となり、実装のコスト(環境等への設 置など)も小さくできる。さらに、三辺測量や ステレオカメラでは、No Line of Sight (NLOS) やオクルージョンによりターゲットからの信号 や画像が得られない超音波受信センサやカメラ が1つでも存在すれば、3次元位置認識に失敗 する。その点、提案手法は、コンパクトな設計 にできるため,位置認識に失敗する可能性を従 来よりも小さくできると考えられる。

●トラッキング可能領域の拡大

超音波信号は空気中での減衰が大きいため, 離れた(5m以上)ターゲットに対する高精度 の測距は難しい。また、本稿で用いた超音波受 信センサは指向性が強いため、トラッキング可 能な領域は限定される。同様の問題はカメラに も当てはまる。よって、広角の超音波トランス デューサやカメラを使用する、複数の超音波ト ランスデューサを搭載してより受信可能な入射 角を広げる、などの工夫が求められる。

多点同時トラッキングによるモーション
 キャプチャシステムの実装

提案手法は安価に実装できるにもかかわらず、 光学式あるいは磁気式のモーションキャプチャ システムの位置認識精度(誤差1mm 程度)に 匹敵できる精度を実現している。よって複数の 送受信装置を用いることで光学-超音波による ハイブリッド型のモーションキャプチャシステ ムを構築が可能となる。しかし、その実現には フレームレートの向上が不可欠である。拡張位 相一致法では、図3に示した通りドップラーシ フト推定のための正弦波を追加した分だけ送信 時間が長い。我々はこの正弦波なしでも移動体 測距を高精度に行う手法 [6] をすでに構築し ており、よって送信時間を短縮することは可能 である。また,超音波を用いた3mの距離計 測には、伝播時間だけでも約10m秒を要する。 そのため理論的な限界は、約100 fps となる。 複数の送信機を用いる場合,時分割による3次 元位置計測を行えば、送信機の数に応じてフ レームレートは悪化する。よって、現在の active system から passive system への設計変更 を行う、あるいは広帯域超音波センサを用い周 波数分割による測距を行う,等の拡張が必要と なる。

[参考文献]

- [1] 橋爪,金子,杉本:位相一致法による正確な超 音波位置認識手法とその特性,電子情報通信学会論 文誌, Vol. J91-A, No. 4, pp. 435-447, 2008.
- [2] Ito, T., Sato, T., Tulathimutte, K., Sugimoto, M., Hashizume, H.: A Scalable Tracking System Using Ultrasonic Communication, *IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences*, Vol. E92–A, No. 6, pp. 1408–1416, 2009.
- [3] 佐藤, 杉本, 橋爪:高精度超音波移動体測位の ための位相一致法の拡張手法, 電子情報通信学会論 文誌, Vol. J92-A, No. 12, pp. 953-963, 2009.
- [4] Sugimoto, M., Tulathimutte, K., Ito, T., Sato, T., Hashizume, H.: An Ultrasonic 3D Positioning System using a Single Compact Receiver Unit, In *Proc. of LOCA* 2009, pp. 240–253, Tokyo, Japan, 2009.
- [5] Nakamura, S., Sato, T., Sugimoto, M., Hashizume, H.: An Accurate Technique for Simultaneous Measurement of 3D Position and Velocity of a Moving Object Using a Single Ultrasonic Receiver Unit, In *Proc. of IPIN 2010*, ETH Zurich, Switzerland, pp. 1–7, 2010.
- [6] Sato, T., Nakamura, S., Sugimoto, M., Hashizume, H.: Extended Phase Accordance Method: A Realtime and Accurate Technique for Estimating Position and Velocity of Moving Objects using Ultrasonic Communication, *Sensors and Transducer Journal* (special issue, Dec. 2010), Vol. 9, pp. 56–70, 2010.

[当該研究期間の成果発表論文]

[7] Sugimoto, M., Kanie, N., Nakamura, S., Hashizume, H.: An Accurate 3D Localization Technique using a Single Camera and Ultrasound, In *Proceedings of IEEE IPIN* 2012, Sydney, Australia, pp. 1–8, November 2012.

(http://ieeexplore.ieee.org/xpls/abs_all.jsp? ar number=6418874)

- [8] 杉本, 蟹江, 中村, 橋爪:単眼カメラと超音波 を用いた高精度三次元位置認識手法, ロボティク ス・メカトロニクス講演会 2012 (ROBOMEC 2012), 浜松, 静岡 (2012 年 5 月).
- [9] 蟹江,中村,杉本,橋爪:単眼カメラと超音波 による高精度三次元位置認識手法,電子情報通信学 会超音波研究会,日野,東京(2012年2月).
- [10] Nakamura, S., Sugimoto, M., Hashizume, H.: Measuring Phase Characteristics of Ultrasonic Microphones for Accurate Ultrasonic Localization Systems, In *Proceedings of IEEE IUS 2011*, pp. 979–982, Orlando, FL, October 2011.
- [11] Nakamura, S., Sato, T., Terabayashi, K., Sugimoto, M., Hashizume, H.: An Accurate and Compact 3D Positioning System for a Moving Target by Integrating Extended Phase Accordance Method and Particle Filter, In *Proceedings of IEEE IPIN 2011*, Guimaraes, Portugal, September 2011.
 (http: //ipin2011.dsi.uminho.pt/detailedProgram. php).
- [12] Sato, T., Nakamura, S., Terabayashi, K., Sugimoto, M., Hashizume, H.: Design and Implementation of a Robust and Real-time Ultrasonic Motion-capture System, In *Proceedings of IEEE IPIN 2011*, Guimaraes, Portugal, pp. 1–6, September 2011.

(http://ieeexplore.ieee.org/xpls/abs_all.jsp? ar number=6071907