主成分分析と画像エッジを用いたロバストかつ高速な パターンマッチング手法の開発

Development of Fast and Robust Pattern Matching Method Using Principal Component Analysis and Image Edges

2021012

研究代表表	皆 熊本大学	大学院 先導機構	特任助教	Ŀ	瀧		剛
共同研究	皆 熊本大学 自然科学	大学院 研究科	教 授	内	村	圭	_

[研究の目的]

カメラで撮影した画像から,予め登録した画 像パターンを見つけ出すパターンマッチングは 画像処理の基本技術である。パターンマッチン グはFA分野における産業用ロボットや文字読 み取り装置などに用いられる。パターンマッチ ングに対する要求性能としては,高い位置合わ せ精度,明るさや隠れなどの見かけの変化に対 するロバスト性,および高速処理が挙げられる。

よく知られるパターンマッチング法として正 規化相関法(NCC)がある。NCCではテンプ レートの中心位置をずらしながら入力画像と照 合を行うことでターゲットのXY位置を求め ることができる。NCCを用いてターゲットの 回転方向を特定する方法として、テンプレート を回転させながら何度も照合を行う回転サーチ 法が知られる。しかし、この方法は多くの計算 時間を要する。また、NCCではターゲットの 一部が欠けたり、遮蔽した場合で検出精度が悪 くなるという問題もある。

これに対して本研究では,主成分分析を用い て多数のテンプレート画像群を情報圧縮するこ とで検出精度を維持しつつ計算量の削減を図る。 さらに,2枚の画像間の類似性を評価する際に, 物体の輪郭情報(エッジ)を利用することで, ターゲットの欠けや遮蔽に強いパターンマッチ ングの実現を目指す。評価実験では、シミュ レーション評価および、悪条件下で撮影された 画像を用いた、実画像実験での評価を行う。

[研究の内容,成果]

図1に従来の回転サーチによるパターンマッ チング法(同図の上側)および主成分分析を用 いたパターンマッチング法(同図下側,固有値 テンプレート法と呼ぶ)の概略を示す。

NCC では入力画像に対して,様々な回転角 でのテンプレートを畳み込むことで,各方向角 での画像類似度を算出する。一方で,固有値テ ンプレート法では,様々な回転角のテンプレー ト群を主成分分析で情報圧縮して新たなテンプ レート画像(固有値テンプレート)を生成する。 図1の左下に生成した固有値テンプレートを示

図1 固有値テンプレート法概略

す。この方法によって、入力画像と固有値テン プレートとの畳み込み結果から、回転サーチと 同じ画像類似度が近似的に計算可能である。こ のとき回転サーチでは N 回必要であったら畳 み込み演算が M(<N)回に減らすことができ る。すなわち、パターンマッチングの処理時間 の大部分を占める畳み込み演算の回数を減らす ことで、処理時間の削減ができる [2][3][4] [5]。

図2に画像のエッジ情報を用いたエッジ固有 値テンプレート法の概略を示す。

エッジ固有値テンプレート法では,単純な画 像の濃淡値ではなく一度,画像を水平方向と垂 直方向の2枚のエッジ画像に変換した後に,そ れぞれに対して固有値テンプレート法を適用し て照合を行う方法である。このときの画像類似 度は水平および垂直方向のエッジ画像での照合 結果の線形和で計算される。

ここで、画像エッジといってもいくつかの算 出法がある。たとえば、図3(a)の入力画像に 対して Canny エッジフィルタを用いた結果が 同図(b)であり、エッジ強度で正規化を行っ た結果が同図(c)である。そこで、固有値テン プレート法に適した画像エッジ算出法の選定を

図3 エッジの種類

行う。図4に、Canny エッジフィルタ/Sobel エッジフィルタ、および正規化あり/正規化な しの全4パターンでの固有値テンプレート法の 情報圧縮効率をグラフ化した図を示す。横軸は 近似次数で縦軸が圧縮効率である。同図より Canny 型の正規化なしのエッジフィルタを用 いた場合に、最も少ない次数(すなわち、固有 値テンプレートの枚数*M*が小さくてすむ)で 情報圧縮できることが分かった[1]。ただし、 エッジを正規化しないとシェーディング等の局 所的な明るさ変動に弱くなる。そこで、入力画 像を一度エッジ強度の分散値で除算した後に、 エッジ固有値テンプレート法を適用する方法を 用いる[1]。

固有値テンプレート法の性能を検証するため に、人工的に生成した画像を用いたシミュレー ション実験および実際にカメラで撮影した実画 像実験を行った。

シミュレーション実験で用いた画像を図5に 示す。同図(a)のテンプレートに対して、同図 (b)のようなメッシュ状の背景にランダムに 平行移動および回転を加えたターゲットを配置 した画像を100枚用意した。また、同図(c)の ようにターゲットの一部が欠けた画像を100枚 用意した。

表1および表2に, それぞれ「欠けなし」お よび「欠けあり」の場合の性能評価結果を示す。

図4 各エッジに対する圧縮効率

表1 欠けなしの結果

手 法	位置誤差 [pix]	角度誤差 [deg]	成功率 [%]
NCC	0.36	3.29	96.0
RIPOC	0.07	0.11	99.0
Eigen	0.25	0.75	82.0
Edge Eigen	0.21	0.24	100.0

表2 欠けありの結果				
手 法	位置誤差 [pix]	角度誤差 [deg]	成功率 [%]	
NCC	0.73	3.12	86.0	

0.99

0.75

0.44

55.0

82.0

100.0

0.49

0.50

0.38

RIPOC

Eigen

Edge Eigen

NCC は正規化相関による回転サーチ, RIPOC は回転不変位相限定相関法, Eigen はエッジを 使わない固有値テンプレート法, Edge Eigen はエッジ固有値テンプレート法である。表より, 提案するエッジ固有値テンプレートの検出成功 率は 100 [%] となりロバスト性が確認できた。

続いて、実環境下での性能を検証するために 図6に示す撮影装置撮影した実画像での評価を 行った。撮影装置はCMOSカメラ、XYの機械 ステージおよびLED照明から構成される。評 価に用いた画像を図7および図8に示す。図7 はメモリモジュール(Memory)で、図8は基 盤の一部(LSI)である。図8では片側から強 い照明を当ててわざとシェーディングを加えて いる。画像のサイズは512×512[pix]である。

位置精度評価のために X ステージを 0.1 [mm] 間隔で移動させて 100 枚撮影し,方向

図6 実験装置

(b)Input image

図7 実験画像 (Memory)

図8 実験画像(LSI)

角精度評価のために回転ステージを 1.8 [deg] 間隔で 100 枚撮影した。

Memory および LSI に対する評価結果を表3 および表4に示す。NCC による回転サーチ では半数以上が検出に失敗した。RIPOC は Memory では高い性能を得たが、LSI ではほと んどが失敗した。失敗要因として、テンプレー

毛 注	位置誤差	角度誤差	成功率	
1 14	[pix]	[deg]	[%]	
NCC	5.42		8.5	
RIPOC	0.24	0.55	98.5	
Edge Eigen	0.28	0.30	100.0	

表3 Memoryの結果

表4 LSI の結果				
手 法	位置誤差 [pix]	角度誤差 [deg]	成功率 [%]	
NCC	3.06	2.99	13.5	
RIPOC	1.24		1.5	
Edge Eigen	0.33	0.35	98.0	

(a)Template

(b) Another viewpoint

図9 撮影方向によるチップ足の見かけの形状変化

トとターゲットの見かけの相違がある。たとえ ば、図9に示すように Memory のターゲット が回転するとチップ足の形状の見え方が変化し、 テンプレートとターゲットとの形状が合わなく なる。また、LSI ではテンプレートと似た形状 を持つ箇所が複数存在するため、誤検出が起き やすい。

このように難しいケースでありながら,提案 するエッジ固有値テンプレート法が Memory および LSI のどちらのケースでも最も高い成 功率となった。

また,この時のエッジ固有値テンプレート法 の処理時間は一枚当たり約100 [msec] (Corei 7 3.4 GHz マシンを使用)であった。

[今後の研究の方向]

エッジ固有値テンプレート法により, ロバス トかつ高速なパターンマッチングが実現できる ことを確認できた。さらなる計算時間短縮のた めに,現在,多重解像度処理による効率化を 図っている [6]。現状の固有値テンプレート法 では,ターゲットの位置および回転方向の推定 ができるが,実用上重要であるスケール変化に は対応していない。そこで,Iterative Closest Points (ICP)アルゴリズム等の併用により, スケール変化の対応を行う。

今後の方向性としては、固有値テンプレート 法は並列化が容易なアルゴリズムであることか ら、マルチコア処理や GPGPU 等のハードウェ アによる高速化を図り、3 次元的な姿勢の推定 を行うことを目指す。

[成果の発表, 論文等]

- [1] 上瀧 剛, 矢田晃嗣郎, 内村圭一:積分型正規化
 エッジに基づく固有値テンプレート法, システム制
 御情報学会論文誌, vol. 26, no. 8, 2013
- [2] 上瀧 剛,内村圭一:隠れにロバストな形状ベース固有値テンプレート法,第56回システム制御情報学会研究発表講演会,pp.378-379,2012
- [3] 上瀧 剛, 矢田晃嗣郎, 内村圭一:形状ベース固 有テンプレート法によるパターンマッチングとその 性能検証, 第18回画像センシングシンポジウム (SSII 2012) 講演論文集, 2012
- [4] Gou Koutaki, Koushiro Yata, Keiichi Uchimura, Michiaki Kan, Daisuke Asai, Makoto Takeba: Fast and High Accuracy Pattern Matching Using Multi-Stage Refining Eigen Template, Proceeding of 19th Korea-Japan Workshop on Frontiers of Computer Vision (FCV 2013), pp. 58–62, 2013
- [5] 矢田晃嗣郎,上瀧 剛,内村圭一,菅 倫明,浅井 大介,竹葉 誠:エッジに基づく固有値テンプレー ト法によるロバストな画像照合,火の国情報シンポ ジウム 2013 論文集,2013 (CD-ROM)
- [6] 矢田晃嗣郎,上瀧 剛,内村圭一,菅 倫明,浅井 大介,竹葉 誠:多重解像度処理による高速かつ頑 健な固有値テンプレート法,電気学会情報処理/次 世代産業システム合同研究会,pp.45-50,2013