ワンショット共焦点光学顕微鏡による病理組織観察法の創出

		2161024					
	研究代表者	徳島大学大学院 社会産業理工学研究部	講師	南	JII	丈	夫

One-shot confocal microscopy for histopathological diagnosis

病理組織診断では,高精細に組織を観察する ため,光学顕微鏡のボケが出ない程度に病変の 極一部(厚さ4~5μm)を切り出して診断する。 その為,切り出した部位が不適切であると,病 変が切片に含まれず,誤診してしまう可能性が ある。

そこで本研究の目的は、病変が確実に含まれ るであろう厚い組織であっても、光学顕微鏡の ボケがなく、かつ病理組織診断に師匠がないほ どの観察速度を有する病理組織観察法の創出を 目指す。本研究では、空間情報を光の波長へ変 換する波長/空間次元変換に基づいたワン ショット共焦点光学顕微鏡の開発を行った。共 焦点光学顕微鏡の有する高い光軸分解能により 厚い組織であってもボケがないイメージを取得 可能である。また、波長/空間次元変換による ワンショットイメージングにより、従来の共焦 点光学顕微鏡に内在した時間分解能の限界を大 幅に改善し、病理診断に支障がないほどのイ メージングの高速化が実現可能となる。

以上から,本研究では病理検査の高精度化に 伴う人間の健康寿命の増進とともに,病気を診 断する病理医の視点に立ったユーザビリティに 基づいた病理観察法を実現し,人間と機械の調 和による医療の進歩を目指す。 [研究の内容,成果]

1. ワンショット共焦点光学顕微鏡の開発

共焦点光学顕微鏡は、共焦点効果による深さ 分解能と迷光除去能力を持つことから、広く非 接触表面形状計測やバイオイメージングで利用 されている。共焦点効果を得るためには、光源 ピンホール,サンプル焦点,検出ピンホールが それぞれ結像している必要がある。その為.一 般的には、上記の各焦点が結像関係にある光学 系を作製し試料を走査するサンプル走査法。あ るいはビーム走査光学系を通して試料へ集光し 発生した散乱光が同じ光路を通りビーム走査し ても元の光路に戻ることを利用したデスキャン システムが用いられてきた。従来、高速なイ メージングを実現するためには、ビーム走査に よるデスキャンシステムが用いられ、ビーム走 査にはガルバノミラー,ポリゴンミラー, MEMS ミラー、マイクロレンズアレイといっ た機械的走査機構が用いられている。しかし, これらの機械的走査機構は、振動などの外乱に 弱く、またイメージング速度は機械的走査によ る限界があった。

そこで本研究では,回折格子を用いた波長/ 空間変換によるワンショット共焦点光学顕微鏡 の開発を行った。従来のビームスキャン部を波 長分散素子に変更することで,機械的可動部を 排除し,ワンショットで共焦点イメージを取得 することが可能となる。

図1に開発したワンショット共焦点光学顕微 鏡の概念図を示す。ここで、光軸方向を Z 軸、 光軸に直交した2次元平面をXY面となるよ うな3次元座標を定義した。光源には広帯域光 源(中心波長: 780 nm. 帯域: 10 nm)を用いた。 光源から出射された光は、空間フィルタリング された後、シリンドリカルレンズを用いてライ ンビームに整形した。これは、Y 軸方向のス キャンレス化を行っていることとなる。さらに, このラインビームを回折格子(溝本数:1200 本/mm) に照射することで、X 軸方向には波 長で展開され、Y軸方向には同じ波長が空間 的に広がっている照明光 (Vertical rainbow) を作り出す。これを対物レンズ(倍率:×60, NA: 0.95) で集光することにより、サンプル 上には Vertical rainbow の2次元焦点群が生成 される。サンプルの情報を反映した反射・散乱 光は、同じ光路を逆から辿ることで再び同じ回 折格子に集光され、空間/波長変換が起こる。 空間/波長変換によって、空間に展開されてい た波長の情報は再び重ねあわされ、シングル ビームに戻る。この光は、ビームスプリッタに よってマルチチャネル分光器に導かれる。マル チチャネル分光器の入射スリット上にライン集 光された光は、この入射スリットによって共焦 点性を持たされた後にマルチチャネル分光器に よって分光され、CMOS カメラ(1280×1024 ピクセル)によって検出した。

2. 基礎特性評価

開発したワンショット共焦点光学顕微鏡の 基礎特性評価を行った。図2に試料にテス トチャート (1951 USAF Resolution Target. Edmund Optics)を用い画像化した結果を示す。 Y軸方向はライン照明(空間)により画像化 している軸である。即ち、同一波長のライン ビーム内における位置ごとの強度の違いによっ て画像化されている。一方, X 軸方向は空間/ 波長変換により、空間情報が波長に展開するこ とにより画像化している軸である。即ち、波長 ごとの強度の違いによって画像化されている。 以上のことから、図 2a は一見すると一般的な 2次元反射イメージのようであるが、実際には サンプルの情報を反映した vertical rainbow の ライン分光イメージングによって取得された画 像である。

測定した部位は、グループ7の要素4 (181 line pairs/mm)、要素5 (203 line pairs/mm)、 要素6 (228 line pairs/mm) である。このこと から、視野は68 μ m×156.2 μ m であった。ま た、画像は露光時間2.84 ms、フレームレート 22.09 fps で取得した。このイメージングは、 機械的走査をおこなわずにワンショットで計測 しているため、各ピクセルの測定タイミングの 同時性が担保されている。

図2の断面プロファイルを用い空間分解能の 評価を行った。その結果,本システムでは X 方向において 1.18 µm, Y 方向において 1.15

図1 波長/空間次元変換によるワンショット共焦点光学 顕微鏡の概念図

図2 ワンショット共焦点光学顕微鏡による画像化。(a) ワ ンショット共焦点画像。(b) Y 軸プロファイル(ライ ン照明軸方向)。(c) X 軸プロファイル(空間/波長 次元変換方向)。

µm の空間分解能を有していることがわかった。

開発したワンショット共焦点光学顕微鏡の空間分解能は、回折理論により考察可能である。 今回、ライン型共焦点光学系を応用していることから、回折限界に基づく X, Y 軸方向の理 論的空間分解能 δX, δY はそれぞれ、

$$\delta X = 0.51 \frac{\lambda}{NA}$$
$$\delta Y = 0.61 \frac{\lambda}{NA}$$

となる。ここで、 λ は波長, NA は対物レン ズの開口数である。回折限界に基づく理論空間 分解能は、それぞれ *δ*X=0.42 μm、 *δ*Y=0.5 μm である。ただし, X 軸方向の空間情報は波 長軸に展開されていることから、空間分解能 δX は、使用したマルチチャンネル分光器の波 長分解能にも制限される。波長分解能に基づく 理論空間分解能は δX=0.71 μm であった。こ のことから、開発したワンショット共焦点光学 顕微鏡の面内分解能において、X 軸方向に対 してはマルチチャンネル分光器の波長分解能, Y 軸方向については対物レンズの回折限界に 制限されると考えられる。本実験で実際に得ら れた X 軸, Y 軸空間分解能は, 理論空間分解 能に対し、2倍程度悪い結果となった。この差 は、光学系のアライメント、対物レンズ瞳面で の強度プロファイル等の影響を受けていると考 えられる。このことから、さらなる光学系の改 良により、理論空間分解能程度の空間分解能を 得られると考えられる。

次に、開発したワンショット共焦点顕微鏡の Z 軸空間分解能について評価を行った。図 3 に 試料にミラーを用いた場合の結果を示す。対物 レンズの焦点位置にサンプルがある場合を Z= 0 μ m と定義した。共焦点スリットを Open 状 態にした場合、Z 軸強度プロファイルの半値全 幅は 30 μ m となった(図 3a 緑、図 3c)。その ため、Z=0 μ m (In-focus)の場合と、Z=-12 μ m (Out-of-focus)の場合で同様の画像が取 得された。一方、共焦点スリットを狭めた場合

図3 ワンショット共焦点顕微鏡の光軸分解能評価。(a) Z 軸 プロファイル。緑、共焦点スリットを Open 状態で測定 したプロファイル (非共焦点光学系)。赤、共焦点スリッ ト幅を狭めた場合のプロファイル (共焦点光学系)。(b) 共焦点光学系における Z=0µm および Z=-12µm 位置 でのイメージ。(c) 非共焦点光学系における Z=0µm お よび Z=-12µm 位置でのイメージ。

(共焦点光学系), 焦点からのみ信号が得られ, Z=-12 μ m とした場合は信号が減衰された (図 3b)。この時, Z 軸強度プロファイルの半 値全幅は 2.41 μ m であった(図 3a 赤)。以上の ことから,開発したワンショット共焦点光学顕 微鏡は高い Z 軸空間分解能を有していること がわかる。この時得られた Z 軸空間分解能は, 通常の病理組織診断で用いられる組織切片厚 3~5 μ m に対して,十分小さい値が得られた。

3.3次元形状計測への応用

開発したワンショット共焦点光学顕微鏡を3 次元形状計測へ応用した。図4にチップコンデ ンサの3次元形状計測応用の例を示す。露光時 間は9.15 ms,フレームレート25 fpsで計測し た。また、チップコンデンサ表面をZ=0 µm と定義した。Z=0 µm においては、チップコ ンデンサ表面、特に電極部が可視化されている 様子がわかる。Z=-150 µm 位置では、焦点 に試料がないため信号が減弱している様子がわ かる(チップコンデンサ上部)。Z=600 µm で は、基板表面が可視化されている様子がわかる。 これらを3次元再構築することで、チップコン デンサの3次元形状を高い3次元空間分解能で 可視化できていることがわかる。

4. 植物細胞観察への応用

次に,開発したワンショット共焦点光学顕微 鏡を植物細胞観察へ応用した。図5にトマト の葉の観察結果を示す。通常の光学顕微鏡像で は,深さ方向に積分された画像となっている。 そのため,葉の厚い組織のために,焦点外から のボケた像も重畳し,不鮮明な画像となってい る事がわかる。

一方,開発した共焦点光学顕微鏡像では,焦 点面のみの情報が得られるため,植物細胞の形 態を高いコントラストで測定できていることが わかる。この時,露光時間は29.12 ms,フ レームレートは22.67 fpsとし,高速にZ軸方 向に走査しながら観察することで,3次元形態 の1ボリューム毎秒程度でビデオ観察が可能で あった。このことは、本手法のワンショット画 像化能と共焦点効果による高い3次元分解能を 同時に実現していることで初めて実現される。

5. 生体組織観察への応用

最後に,開発したワンショット共焦点光学顕 微鏡を生体組織観察へ応用した。図6にマウス 筋組織の観察結果を示す。筋組織は,複数の筋 細胞(図6b,円状のピンク色に染色されてい る部分)と間質(図6b,透明部および線維状 のピンク色に染色されている部分)が主な構成

図5 植物細胞観察への応用。(a) 葉の外観図。(b) 通常 の光学顕微鏡像。(c) 開発したシステムによる共焦 点イメージ。

図6 マウス筋組織観察への応用。(a) 切片化した組織の HE 染色像。(b) 青四角部の拡大図。(c) 共焦点スリット を Open 状態,(d) 共焦点スリットを狭めた状態にした 場合のマウス筋組織の観察像。

用途である。筋組織を共焦点スリットを Open 状態で観察した場合,深さ方向に積分された画 像となっているため,コントラストが低い(図 6c)。

一方, 共焦点スリットを狭め, 共焦点を有し ている状態で観察すると筋細胞の形態を明瞭に 確認できることがわかる。以上のことから, 開 発したワンショット共焦点光学顕微鏡を生体組 織へ応用可能であることがわかる。今回は原理 確認のため切片化した組織を用いたが, 今後は ブロック状の組織を用いることで, 本手法の有 用性を確認していく。

[今後の研究の方向,課題]

本研究では、波長/空間次元変換を援用した

ワンショット共焦点光学顕微鏡の開発を行い, その基礎特性を明らかにし,および表面形状計 測応用,バイオイメージング応用により本手法 の有用性を示した。本手法は,高い3次元空間 分解能を持ちながらも,ワンショットで2次元 共焦点画像を取得可能である。その為,高速に Z軸方向を走査することで,3次元イメージの 動画観察も可能であることを示した。

本手法を病理組織切片観察へ応用することで, 厚い試料切片を用いた病理組織診断を実現こと が可能である。これにより,病変部の見逃しを 防止し,病理組織診断の誤診を防止することが 可能となる。本研究では,その原理検証を行っ たが,今後は実際の病理組織切片観察への応用 が期待される。そのためには,本手法の多色化 が求められる。これは,通常の病理組織切片は 多重染色することにより組織の状態を観察して いるためである。また,今回示した空間分解能 は理論空間分解能には至っていない。そのため, 今後はさらなる光学系の改良を行い,実用化に 向けて検討を進めていく。

[成果の発表, 論文等]

- 宮本周治,長谷栄治,南川丈夫,謝宜達,水谷康弘, 岩田哲郎,安井武史,山本裕紹, "スリット共焦点 と波長/空間変換を用いたスキャンレス・フル フィールド共焦点顕微鏡",精密工学会誌,82,7, 679-682 (2016).
- Shuji Miyamoto, Eiji Hase, Takeo Minamikawa, Takeshi Yasui, and Hirotsugu Yamamoto, "Videorate volume imaging confocal microscope based on wavelength / space conversion by use of multichannel spectrometer", Frontier in Optics (FiO) 2016, JTh2A.128, (Oct. 17-20, 2016, Rochester, USA).
- 宮本周治,長谷栄治,山本裕紹,安井武史,南川丈夫,"波長/空間変換を用いたスキャンレス共焦点レーザー顕微鏡の開発",レーザー学会学術講演会第37回年次大会,(2017/1/7-9,徳島大).
- 4. 宮本周治,長谷栄治,南川丈夫,山本裕紹,安井武 史,"波長分散素子を用いたスキャンレス共焦点 レーザー顕微鏡の開発",第1回フォトニクス研究 会「光の境界を開拓する!!」(2016/12/2-3,沖縄県 青年会館).
- 5. 宮本周治,長谷栄治,南川丈夫,山本裕紹,安井武 史,"波長/空間変換およびマルチチャネル分光器を 用いたワンショット・フルフィールド共焦点光学顕 微鏡の開発",第39回日本生体医工学会中国四国支 部大会,(2016/10/15,徳島大).