ヘルスコンディション常時計測用ウェアラブル 超高感度皮膚ガスセンサ開発

Development of high sensitive skin gas sensor for wearable and real-time health condition monitoring

31902	218
31902	218

研究代表者	東京大学大学院	工学系研究科	教	授	田	畑		仁
共同研究者	東京大学大学院	工学系研究科	助	教	Ш	原	弘	靖

[研究の目的]

生活習慣病の予防と早期発見は,健康長寿社 会の実現と増え続ける医療費の抑制において重 要である。なかでも人体から代謝によって放出 される生体ガスを用いた非侵襲モニタリングは 体調の把握や疾病の早期発見につながると考え られ,近年注目されている。

生体ガスの中でも呼気として放出されるガス 「呼気ガス」や皮膚から放出されるガス「皮膚 ガス」は疾病や体調との関連性について多くの 報告が存在する[1-3]。呼気ガスは息を捕集容 器に吹き込むだけで捕集できるためサンプリン グしやすく、サンプル量も多いという長所はあ るが連続的に採取し経時変化をモニタリングす るというのは被験者に負担がかかる。一方で皮 膚ガスは、放出量が少ないがあらゆる場所から 放出されており、採取場所を腕などにすれば被 験者が意識することなく採取しやすく経時変化 のモニタリングが容易である。

そこで、本研究では皮膚ガスに着目した。ガ スには、300種類以上の成分が含まれており、 その一部は疾病や体調との関連性が報告されて いる[4]。日常生活に支障をきたさずに装着で きるウェアラブルガスセンシングデバイスの開 発によって、リアルタイム体調モニタリングと 疾病の早期発見が期待される。先行研究におい ては、皮膚ガスのうち脂肪燃焼や糖尿病との関 連性が知られているアセトンを対象としたウェ アラブルガスセンシングデバイスの報告例があ る[5]。

しかし,実際に皮膚ガスを体調モニタリング のツールとして利用するためには,アセトンの みではなく多様なガスについて測定が可能であ ることが望ましい。

そこで本研究では皮膚アンモニアに着目した。 皮膚アンモニアは人間の皮膚から毎分1 cm² あ たり数 ppb から数十 ppb 程度放出されており, 肝機能障害や疲労度との関連性も指摘されてい ることからモニタリングすることへの臨床的意 義も高い。そこで高感度検出とガス選択性を有 するウェアラブルアンモニアセンサーの開発を 目的として,導電性ポリアニリン (PANI) と 多孔質ゼオライトを用いたハイブリット構造ガ スセンシングデバイスを作製した。

[研究の内容,成果]

1. 原 理

1.1 導電性高分子ポリアニリン (PANI)

Fig.1 に PANI の構造式を示す。PANI は p 型半導体であり, Emeraldine Salt (ES)の構 造においてプロトンがキャリアとなり導電性を 示す。 これが脱プロトン化されると Emeraldine Base (EB) の構造をとる。EB はキャリアを持 たず絶縁性を示す。

アンモニアガスと反応すると局所的に脱プロ トン化され,抵抗値が増加する。ガス濃度と抵 抗変化の検量線を作成することでセンサの抵抗 値からガス濃度の算出が可能となる。

Fig.1 PANIの2形態と構造式 [6]

1.2 ゼオライト

ゼオライトはケイ酸の一部の Si 原子が Al 原 子に置き換わった組成を持つ物質(アルミノ珪 酸塩)で結晶内にナノサイズの細孔をもつ多孔 質材料であり,(Fig.2)。化学反応を促進する 「触媒効果」,細孔が分子のふるいの様に機能す る「分子ふるい効果」,細孔に分子を吸脱着す る「濃縮効果」の3作用が知られている。

Fig.2 ゼオライトの構造[4]の模式図。Si または Al 原 子を中心に 4 つの酸素原子からなる四面体構造が いくつも連結された構造をとる。

1.2.1 分子ふるい効果

ゼオライトを気体が通過するとき細孔より大 きな分子の物質は通過できず、小さな分子のみ が通過できる。すなわち分子に対してふるいの ように作用する。細孔の大きさはゼオライトの 種類に応じて異なるため大きさゼオライトの種 類と細孔の大きさを Fig.4 に、各ガスの分子の 大きさを Table 1 に示す。

Fig.3 4A 型ゼオライトの構造[7]と分子ふるい効果の 模式図。左図において交点はSiまたはAl原子で, 交点間の太線は結合を表す。右図は細孔より大き い分子は透過できないことを表す。

 Fig.4
 ゼオライトの種類と細孔径[7]
 今回衣装したゼオ

 ライトはA型のA-4で約4Åの細孔を持つ

Table 1	ガスの種類と分子径
ガス	分子径(Å)
エタノール	4.3-5
アセトン	4.6
アンモニア	2.3-
水	2.7

1.2.2 ガス濃縮作用

ゼオライトのガス吸着は Lamgmuir らによ り平衡状態での吸着量 n^{*}a は,吸着平衡圧力 p, 単分子層吸着量 n_m^{*}a を用いて

$$n^a = \frac{n_m^a \mathrm{K} p}{1 + \mathrm{K} p}$$

と表されることが報告されており,また特に低 分圧条件においては p≪1/K であることに注意 して

$$n^a = n_m^a \mathrm{K} p$$

と近似できる。(ヘンリー型の吸着等温式) したがってある一定面積の単分子層の存在下 で,吸着量 n^a は吸着平衡圧力に比例する。そ のため皮膚ガスの量(分圧)に対して十分な量 のゼオライトが存在すれば皮膚ガス量に比例し てゼオライトに皮膚ガスを吸着させることがで きると考えられる。

科学もしくは工学におけるオリジナリティー や寄与可能性

皮膚アンモニアの先行研究には、ガスを直接 採取しガスクロマトグラフィーで分析した報告 [8] や薬剤を染み込ませた濾紙にアンモニアを 吸着させた後イオンクロマトグラフィーで分析 した報告[9] があるが、繰り返し測定に手間が かかり大きな装置が必要という欠点があった。 また到達目標とするウェアラブルデバイスで皮 膚アンモニアの濃度が繰り返し測定できるデバ イスは未だ実用化されていない。そのため、こ れらの問題点を解決することで皮膚アンモニア の測定・変化の追跡が可能となり非侵襲体調モ ニタリングに寄与すると考えられる。

またアンモニアセンサの先行研究においては PANI に金属酸化物ナノ粒子をドーピングする ことにより PN 接合を形成させ,高感度(50 ppt)を達成している報告[6]がある。しかし この報告のセンサは水蒸気にも反応するという 欠点がある。皮膚ガスには汗由来の水蒸気が多 く含まれるため[3],そのまま応用することが できない。本研究のセンサでその点が解決でき ればセンサ性能についてもオリジナリティーが 見込まれる。

3. 実験方法

本研究においては、まず既報同様の手法で PANI 膜を酸化重合にて合成した。その後セン サ作製においては同様手法で合成した PANI 薄膜を検出剤とした。そして分子ふるいのため の薄膜もしくはガス濃縮素子において、金属酸 化物ナノ粒子を高感度化のためのコンポジット 材料として使用した。

3.1 センサの作製方法

3.1.1 PANI 薄膜の作製

室温に保った2M塩酸30mlに過硫酸アン モニウム (APS) 0.44 g, アニリン (Ani) 0.2 mlを混合し30秒程度撹拌した後1cm角のガ ラス基板をいれ1時間静置した。

3.1.2 センサ A 〈PANI-zeolite コンポジットセンサ〉の作製

Fig.5に作製した PANI-ゼオライトコンポ ジットガスセンサーの模式図を示す。サファイ ア基板 (厚さ 0.5 mm) に DC スパッタリング 法にて櫛形金電極(電極幅及び電極間距離 0.1 mm 厚さ100 nm)を作製した。次に、アンモ ニア水 (28 wt%) と過酸化水素水 (30 wt%) を体積比1:1で混合した塩基性ピラニア溶液 に30秒浸すことで親水化処理を行ったのち、 酸化重合法で PANI を成膜した。酸化重合は 室温に保った2M塩酸30mlにAPS 0.44g, Ani 0.2 ml を混合後, 電極以外の部分を防水 フィルムでマスキングした基板を溶液に1時間 浸すことで行った。さらに、その上にゼオライ ト粉末(東ソー製A型ゼオライト・「ゼオラム A-4」・粒径 100 mesh 以下)の水分散液 (1 wt%)を滴下し、ゼオライト薄膜を作製した。 このうちゼオライトありのものを A1, ゼオラ イトなしのものを A2 とした。

Fig.5 PANI-ゼオライトセンサの模式図, 櫛形電極の 詳細寸法及び断面図

3.1.3 センサ B, C 〈PANI センサ〉の作製

センサ1と同様の基板と櫛形電極の寸法で1 cm 角のガラス基板上に Cr/Pt 電極(Cr:5 nm, Pt:100 nm)を作製した。

作製した電極中央に 2 M 塩酸・APS 溶液と 2 M 塩酸 Ani 溶液をそれぞれ 2.5 µl, 酸化タン グステン (WO3) ナノ粒子 1 wt% 水溶液を 5 µl 滴下し, 室温大気中で乾燥を行った。滴下 した。

比較のため酸化タングステン溶液を滴下した ものを B1, 滴下しなかったものを B2 とした。

3.1.4 ガス濃縮素子の作製

ゼオライト(東ソー製A型ゼオライト・ゼ オラムA-4)4.42g,日産化学製スノーテック スST-N30G4.42g,超純水20mlを混合した溶 液をガラス棒でセラミックヒータに塗布・乾燥 した。塗布と乾燥を繰り返すことでヒータ+ゼ オライトのガス濃縮素子を作製した。

センサ B のうち濃縮素子と組み合わせたものをセンサ C1, C2 とした。

3.1.5 ゼオライトの脱離温度測定

ゼオライトの濃縮素子の性能を評価するため 4A ゼオライトのガス脱離温度について昇温脱 離法を用いて評価した。まず 500 ℃に加熱し, 予め吸着しているガスを脱離させたあと室温 (25 ℃)に冷却したのち 10 ℃/min で 650 ℃ま で昇温し,そのときに脱離するアンモニアガス を四重極型質量分析計で定量した。

3.1.6 センサ感度の評価

センサ感度の評価は既知濃度のガスに対する 素子の抵抗変化を測定することによって行った。 パーミエータ(ガステック社製 PD-1B 及び P-3)を用いてアンモニアガスを発生させて、 検出素子を設置した密閉試験器内に導入した。 そのときのガス濃度を NISSHA エフアイエス 製センサーガスクロマトグラフィ ODNA-P3 で測定するとともに試験器内に取り付けたガス センサーの電流-電圧特性を Keitheley 2700 を 用いて測定し、そのときの抵抗値を算出した。

また,ガス選択性を評価するために,濃度1 ppmのエタノール,アセトン,トルエン,二 酸化炭素を導入し,同様に抵抗値を算出した。 実験はいずれも室温で行った。

4. 結果および考察

本報では PANI 薄膜の物性評価及びセンサ A, の性能評価・ゼオライトの脱離温度に関す る評価に関する事項を取り扱う。

4.1 PANI 薄膜の評価

Fig.6 はガラス基板に成膜された PANI 膜の XRD (ω -2 θ) 測定及び UV-VIS 測定のスペク トルである。本実験で合成できる PANI はア モルファス結晶となるが、PANI のアモルファ ス結晶固有のピークが 26° に見られる。また UV-VIS 測定においては 200-300 nm、300-500 nm 付近に π - π *, polaron- π * 遷移由来のなだら かなピークがみられた。これより本反応により PANI が合成できているとみられる。

Fig.6 PANI 膜の XRD/UV-VIS スペクトル

4.2 センサA (PANI-zeolite 膜センサ)の評価

次にセンサ A1, A2 のアンモニアガスに対す る感度(ガスセンサーの抵抗変化値 *Δ*R とガス 導入前の抵抗値 R0 の比, *Δ*R/ R0)を Fig. 7, 8 に示す。

いずれの場合でも PANI の還元による抵抗 増大がみられ,センサ A1 の場合は少なくとも 190 ppb・センサ A2 の場合は少なくとも 200 ppb で検出できることを示した。これ以外の濃 度での測定も試みたところ電極が剥離し素子が 破損し測定ができなかった。Fig.7 はポイント 数が少なく, Fig.8 はエラーバーが大きいため

Fig.7 センサA1 (PANI-Zeolite)の感度測定

Fig.8 センサA2 (PANIのみ)の感度測定

この結果からだけではゼオライトによって有意 差が生じているかどうかはわからなかった。

Fig. 9, 10 はセンサ A1, A2 のアンモニアは 500 ppb, アンモニア以外のガスは 1 ppm 試験 器内に導入したときの感度を表す。A1, A2 と もにアンモニア以外のガスに対してほとんど抵 抗変化しておらず,アンモニアに対してのみ特 異的に反応していることがわかる。よって本素 子のガス選択性は PANI によって生じている と考えられる。

Fig.9 センサ A1 (PANI-zeolite) センサの ガス選択性測定

Fig. 10 センサ A2 (PANI) ガス選択性測定

Fig.11 PANI ゼオライトセンサ表面の光学顕微鏡写真

ゼオライト膜の表面を観察するため A1 (PANI ゼオライト)表面を光学顕微鏡で撮影 した (Fig. 11)。

μm オーダのマクロなスケールでゼオライト の分布に偏りがあることがわかった。

ガスの分子径やゼオライトの細孔径はÅ オーダであり,ゼオライト膜に104倍以上の穴 があっては分子ふるいの効果をなさない。

そこで緻密なゼオライト膜を作成するか濃縮 素子など別な方法でのゼオライトの活用を検討 した。

PANI は既報において 100 ℃以上に加熱する と分解が起き, 質量減少することが報告されて いる[10]。

ドーパントで耐熱性が向上するという報告も あるが,耐熱性が良いものにおいても300℃以 下で分解反応による質量減少が起こる。[10] 緻密なゼオライト薄膜の成膜法としては基板上 で前駆体を塗布後水熱合成する手法[11]や PLD法[12]を用いる手法などがあるがいずれ にしろ加熱を必要とする。

そのため PANI の高温分解への懸念から適 用は難しく以後ゼオライトはセンサと分離する こととした。そして分離した場合分子ふるいと しては機能しないため濃縮素子として用いるこ とを目指した。

4.3 ゼオライトの脱離温度測定

ゼオライトを用いるにあたって用いるゼオラ イトの脱離温度を測定した。その結果を Fig. 12 に示す。

アンモニアの脱離は 135 ℃で最大となり, 230 ℃と 254 ℃にもピークを持った。135 ℃の ピークは物理吸着したアンモニアの脱離のピー

Fig. 12 4A ゼオライトのアンモニアの脱離温度

クであり,230℃と254℃は酸点(ゼオライト の構造中で局所的に酸性を示す部分)に吸着し たアンモニアの脱離のピークと考えられる。こ れより室温でアンモニアガスを吸着したゼオラ イトを400℃程度で加熱すればほぼすべてのア ンモニアが脱離すると考えられる。

[今後の研究の方向,課題]

5. 結 論

作製した PANI-ゼオライトハイブリット構 造センサでは少なくとも 190 ppbのアンモニア ガスの検出は達成した。一般的な市販アンモニ アセンサの最低感度は 1 ppm 前後[13] である ため,市販品よりは高感度を実現した。数 ppb から数十 ppb の皮膚ガス検出にはゼオライト におけるガス吸着蓄積の最適化により達成可能 だと思われる。

6. 展望

ゼオライトを濃縮素子として利用することで ガスを濃縮させることによるハード面の改良に よる高感度化や確率共鳴を利用したノイズの影 響の軽減[14] による高感度化など信号処理の 改善による高感度化が重要である。

[参考文献]

- [1] P. Mochalski, et al., J. Chrom. B 959 (2014) pp. 62-70.
- [2] A. Amann, et al., J. breath res. 8, 3 (2014)
- [3] Y. Sekine, Jpn J Clin Ecol Vol. 25 No. 2 2016, pp.

69-75

- [4] M. Gallagher et al., Br J Dermatol., 159, 4, (2008) pp. 780-791.
- [5] Y. Yamada et al., Anal. Chem., 87, (2015) pp. 7588-7594.
- [6] C. Liu et al., Sensors Actua-tors B: Chem., 261, (2018) pp. 587-597.
- [7] https://www.tosoh.co.jp/zeolite/about/index. html
- [8] S. K. Kim, et al., Proc. Transducers' 11, (2011) pp. 799-802.
- [9] S. Furukawa, et al., J. Chromatogr., B, 1053, (2017) pp. 60-64.
- [10] F. Zhu, et al., J. Therm. Anal. Cal. 115, 2, (2014) pp. 1133-1141
- [11] Z. Wang, et al., Zeolites Sus. Chem. (2016). pp. 435-472.
- [12] D. Coutinho, et al., Micr. Mesop. Mat. 52, 2 (2002) pp. 79-91.
- [13] http://www.fisinc.co.jp/products/
- [14] 都丸仁貴, 平成 30 年度東京大学工学部卒業論文

[成果の発表, 論文等]

- "ウェアラブル皮膚アンモニア測定に向けたポリアニ リン-ゼオライトガスセンサの開発",矢野泰生,山 原弘靖,関 宗俊,田畑 仁,第67回応用物理学会 春季学術講演会,2020/3/12,上智大学
- "Selective gas sensing using WO₃ nanoparticles and zeolites hybrid structure for human cutaneous gas sensors" J. Park, Y. Yamada, H. Tabata, iWOE 2018, 2018/10/1, Les Diableres, Switzerland
- "Selective gas sensing using WO3 nanoparticles and zeolites hybrid structure for human cutaneous gas sensors" J. Park, Y. Yamada, H. Tabata, SSDM2018, 2018/9/13, Tokyo
- "Complementary Skin Gas Sensor Based on Hybrid Structure using WO₃ nanoparticles and Zeolites", J. Park, H. Tabata, 2019 年 第 66 回応用物理学会春季 学術講演会, 2019/3/9, 東京工業大学
- "Characteristics of Skin Gas Sensors using Hybrid Structure for high selective gas sensing", J. Park, Y. Yamada, H. Tabata, 先端医療シーズ開発フォーラム, 2019/2/18, 東京大学