# 人工細胞膜と受容体タンパク質を利用した 脳神経インタフェースの開発

Development of brain-machine interface device with lipid bilayers and membrane proteins

|           | 2207005       |      |    |     |
|-----------|---------------|------|----|-----|
| 研究代表者     | 東京工業大学 大学院機械系 | 博士課程 | 彭  | 相 癸 |
| <br>共同研究者 | 東京工業大学 大学院機械系 | 教授   | 八木 | 透   |

[研究の目的]

脳神経インタフェースは、脳と機械を接続し 人間の機能/知能を拡張できる技術として注目 されている。神経ネットワークは、シナプス前 細胞が放出する神経伝達物質をシナプス後細胞 が感知して、信号伝達を行っている。高度な脳 神経インタフェースを実現するには、神経伝達 物質を精確に感知する計測技術の開発が必要で ある。これまで、神経細胞の電気活動を細胞外 で計測する細胞外記録法や、微小ガラス管を用 いた細胞内記録法などの電気生理学的手法が長 年に渡って用いられてきた。しかし、細胞外電 位からは基本的に活動電位しか計測できないた め、微弱なシナプス電位(活動電位の1/100~ 1/10 程度)を感知できない。一方, 微小ガラ ス管では単一細胞に対して複数点から接続する ことは極めて困難である。

そこで本研究では、人工細胞膜と受容体タン パク質と近い性質を持つナノチューブを利用し てシナプス後細胞を人工的に実現し、シナプス 前細胞から放出される神経伝達物質を検出する 手法の開発を目的とする(図1)。具体的には、 自発展開現象(固体表面に人工細胞膜の構成成 分である脂質を付着させ、界面の相互作用によ り人工細胞膜が固体表面上に広がる現象)を利 用して、人工細胞膜を作製する。作製した人工 細胞膜上にナノチューブを配置し、人工的なシ



図1 提案手法の概要

ナプス後細胞を実現する。その後, 生細胞を人 工細胞膜に接着させ, 電気計測を行う。

本研究の目標は人工細胞膜とナノチューブを 利用することにより,分子レベルで神経細胞の 活動電位を計測する技術の開発である。従来よ りも詳細な活動電位の記録が可能であるため, シナプス電位の同時取得により神経可塑性の発 現メカニズムを明らかにし,神経科学や神経工 学分野の発展に貢献する脳神経インタフェース の実現における重要なマイルストーンとなるこ とが期待できる。

# [研究の内容,成果]

提案手法の実現に向け、これまで下記の3つ

- のサブテーマに取り組んだ。
- A):長期的な計測に適した機械的強度の高い人工細胞膜の形成
- B):人工細胞膜上のナノチューブの物質透過 性の評価
- C):細胞接着を促進する手法の開発 以下にそれぞれの詳細を示す
- A):長期的な計測に適した機械的強度の高い人工細胞膜の形成

### ・背景

従来の支持物のない人工細胞膜は機械的強度 が低く,電極先端に長時間にわたって存在でき ない。一方,内部に固体を導入し人工細胞膜を 支持する方法では,人工細胞膜上に固定された ナノチューブが固体に衝突し機能が損なわれる。 そこで,多孔材料であるポリカーボネート基板 上に人工細胞膜を作製し,人工細胞膜の機械的 強度を向上させた。

・方法

人工細胞膜の原材料である脂質は以下の 手順で準備した。まず13 mMのL- $\alpha$ -Phosphatidylcholine from egg yolk (egg-PC) 溶液および1.3 mMの1, 2-Dihexadecanoylsn-Glycero-3-Phosphoethanolamine (fluorescein-DHPE)を、それぞれ100 mlと10 mlで 混合した。窒素ガスを用いて溶媒であるクロロ ホルムを蒸発させた後、減圧したチャンバー内 で一晩静置してクロロホルムをさらに蒸発させ、 粘着性の混合脂質を得た。22℃条件下で、表面 に 50 nmの小孔を有するポリカーボネート基 板上に混合脂質を塗布し、全体をバッファー (100 mM NaCl, 10 mM Tris-HCl; pH 7.6)に浸 すことで人工細胞膜を自発展開させた。

### ・結果

共焦点顕微鏡による蛍光観察の結果,多孔質 基板であるポリカーボネート基板上に人工細胞 膜が展開できることが分かった(図2(a))。さ らに FRAP 実験の結果,人工細胞膜が流動性 を有していることが判明した。最後に原子間力



図2 a) 人工細胞膜のポリカーボネート基板上での自発展 開の様子。白い矢印は人工細胞膜の先端を示す。 b) 原子間力顕微鏡によるフォースカープ計測の結果。

顕微鏡計測の結果,人工細胞膜の特徴的な粘弾 性質を示すフォースカーブが観察された。 フォースカーブから算出した人工細胞膜のバネ 定数は0.039±0.007 N/mであり,先行研究(I. Mey *et. al.* 2009)と同等な機械的強度を有し ていることを示している(図2(b))。これらの ことから,自発展開法は提案手法の実現に有用 であることが示唆された。

# B):人工細胞膜上のナノチューブの物質透過性の評価

#### ・背景

ナノチューブの物質透過性は,提案手法の実 現において極めて重要な性質である。人工細胞 膜との相互作用によって,ナノチューブの物質 透過が変化することが知られている (J. Geng *et. al.* 2014)。そこで,本研究では人工細胞膜 上でのナノチューブの物質透過性を評価するた め,モデルナノチューブである単層カーボンナ ノチューブ (SWNT)を人工細胞膜上に導入 し,一定の電圧を加えることで,そのイオン透 過性を調査した。

# ・方法

SWNT の電気計測には, Droplet Interface Bilayer (DIB) 法を用いた (図 3)。 具体的に は、まず銀線を2本用意し、それぞれ AgCl 化した後, agarose-LM ゲルでコーティングし た。Agarose がゲル化したあと、ゲルに対 して 5 µl の SWNT 溶液(150 mM KCl, 10 mM HEPES, pH 8.0) を滴下し, 10 mg/mL の 1,2diphytanoylphosphatidylcholine, 1,2-di-(3,7,11, 15-tetramethylhexadecanoyl) -sn-glycero-3phosphocholine (DPhPC) のヘキサデカン溶 液に挿入した。両媒性分子である DPhPC が相 互作用により,液滴まわりを脂質一重膜でコー ティングできるため、2つの液滴を接触させる ことで人工細胞膜形成した。その後、膜内に挿 入された SWNT に対して 50 mV の電圧を印加 し、SWNT の電流応答値を記録した (Axppatch 200B)。得られた電流応答値をもとに、 SWNT のコンダクタンス値を算出した。



# ・結果

図4(a) に電気計測の結果の一例を示す。人 工細胞膜に対して電圧印加したところ,50 pA のステップを確認できたことから、イオンが人 工細胞膜に挿入された SWNT を透過できるこ とがわかった。電流値の上下は、SWNT が膜 への挿入と膜からの離脱を繰り返していること



図4 a) SWNT の人工細胞膜挿入の一例。b) SWNT の コンダクタンスのヒストグラム。

を示唆する。図4(b)に、電圧値と電流応答値 から算出した、SWNTのコンダクタンスのヒ ストグラムを示す(0.1 nS以下のデータは、電 流が流れていないときのデータを除外するため にカットしている)。0.40~0.45 nS と 1.00~ 1.05 nS にピークが観察されている。先行研究 で報告した SWNTのコンダクタンス値が 0.63 nS 前後であることから(J. Geng *et. al.* 2014)、 低いピークが単一の SWNT、高いピークが 2 本の SWNT が同時に人工細胞膜に挿入したこ とを意味すると推察できる。しかし、SWNT のコンダクタンス値が SWNTの長さ、直径に 依存するため、今後はシミュレーションなどの 手法を用いて、コンダクタンス値の二峰性の理 由を精査する必要がある。

# C):細胞接着を促進する手法の開発

# ・背景

提案手法で細胞を計測するためには、細胞を 人工細胞膜上に接着させる必要がある。通常、 細胞は人工細胞膜に対する生着率が低いと思わ れるため、本研究では磁気粒子を用いて細胞の 接着を促進する技術を開発した(図5)。



・方法

C2C12 細胞は理研セルバンク (RCB0987; RIKEN)から入手した。<br />
培地は 10% 牛胎児 血清 (Sigma-Aldrich) および1% Penicillin-Streptomycin Solution (PS) (Sigma-Aldrich) を添加したダルベッコ改変イーグル培 地 (DMEM; Sigma-Aldrich) を成長培地 (Growth Medium: GM) として培養した。培地 は一日ごとに交換した。60~70% コンフルエ ントに達した時点で, 培地1ml あたり 0.5 µl, 2.5 µl, 5 µl のマグネタイトナノ粒子を添加し た(以降のマグネタイト濃度はすべて培地に対 する体積比率で表す)。磁性粒子、細胞核、細 胞質を染色し、磁性粒子の細胞への取り込みを 観察した。磁さらに、磁石に対する細胞の反応 を調べるために、培地中に磁性粒子を入れた細 胞を用意した。24時間後に細胞を培養皿から 取り出し、12 ウェルプレートに 5×104 cell の 細胞を播種し、磁石をウェルの中心線から右寄 りの底面に配置した。4時間後、プレートを顕 微鏡で観察し、境界から右側(磁石領域内: N<sub>in</sub>)と左側(磁石領域外:N<sub>out</sub>)の細胞数の比 率を、1ウェルあたり3箇所で測定した(mag (+)),磁石を置かない群 (mag(-)) も用意 した。Ninと Noutの有意差は Student t-test によ り算出した。

### ・結果

磁性体粒子を培地に添加してから24時間後の細胞を観察したところ,粒子が核の周りに散らばっていることが観察された(図6(a))。ま



図 6 a) 染色した C2C12 とマグネタイトナノ粒子。
 b) 中心線より右側に磁力によって集まった細胞。
 c) 磁石上に集まった C2C12 細胞の数の比。

た、中心線に沿って磁石がある側に細胞が集 まっていることが確認された(図6(b))。磁石 上のC2C12細胞の数と、マグネタイトナノ粒 子を含む培地で磁石を使わずに培養した細胞の 数を数えた(n=3,SE;\*p<0.01;図6(c))。0.5-, 2.5-,5 µl/mlのいずれの群でも、磁石あり (Magnet+、オレンジ色)の方が磁石なし(よ り細胞数が有意に多かった。磁石を下に置かな かったグループでは全群で変化がなかった。以 上の結果から、磁気粒子を用いた手法が細胞接 着の促進に有用であると考えられる。

## [今後の研究の方向,課題]

本研究では、人と機械の融合を目指して「人 工細胞膜と受容体タンパク質を利用した脳神経 インタフェースの開発」を提案した。これまで、 提案手法の実現に向け、A):長期的な計測に 適した機械的強度の高い人工細胞膜の形成、 B):人工細胞膜上のナノチューブの物質透過 性の評価,C):細胞接着を促進する手法の開 発の3つの要素技術に取り組み,一定性の成果 をあげてきた。しかし,最重要課題である提案 手法を用いた神経細胞の計測がまだ実現できて いない。今後は,上記の3つの要素技術をもと に,提案手法を完遂し,脳神経インタフェース としての有用性を評価していく。

## [成果の発表, 論文など]

#### [学術論文誌]

[1] Z. Peng, K. Shimba, Y. Miyamoto, T. Yagi. "A Study of the Effects of Plasma Surface Treatment on Lipid Bilayers Self-Spreading on a Polydimethylsiloxane Substrate under Different Treatment Times", *Langmuir*, Vol. 141, vol. 37, 36, pp. 10732– 10740, 2021. 8.

- [2] Z. Peng, K. Wada, K. Shimba, Y. Miyamoto, T. Yagi. "Formation of Agarose-supported Liposomes by Polymer-assisted Method toward Biosensor", *IEEJ Transactions on Electrical and Electronic Engineering*, Vol. 141, No. 5, pp. 646–653, 2021.
- [3] S. Kanno, Z. Peng, K. Shimba, Y. Miyamoto, T. Yagi, "Functional Analysis of Liposomes Containing Single-Walled Carbon Nanotubes (SWNTs) by Fluorescence Microscopy, "Formation of Agarosesupported Liposomes by Polymer-assisted Method toward Biosensor", *IEEJ Transactions on Electrical and Electronic Engineering*, Vol. 141, No. 5, pp. 620– 626, May, 2021.
- [4] Y. Kirihara, H. Miyata, Z. Peng, K. Shimba, Y. Miyamoto, K. Shimizu, H. Honda, T. Yagi. "Effect of Magnetic Nanoparticle Internalization on Cell Density in Skeletal Muscle Tissue", *IEEJ Transactions on Electrical and Electronic Engineering*, Vol. 141, No. 7, pp. 795–801, May, 2021.