カーボンナノチューブを利用した電気シナプス型電極による 神経インタフェースの実現

Realization of neural interface using electric synapse-like electrodes based on carbon nanotubes

2227004

研究代表者

東京工業大学· 菅 野 翔一朗 日本学術振興会特別研究員 (PD) 菅 野 翔一朗 (助成金受領時:東京工業大学 大学院工学院機械系)

[研究の目的]

刺激型の神経インタフェースは、体内に埋植 した刺激電極で神経細胞を電気刺激することで、 神経系の機能不全が原因で喪失した感覚機能を 補う。理想的な神経インタフェースの実現には 単一細胞を刺激できる程に電極を微細化する必 要がある。しかし微細化した電極は電荷注入能 力が低く、通電した際に体内で電気分解が生じ る。電気分解を防ぐためには、細胞膜の内側へ の電荷注入により刺激閾値の低減が可能な細胞 内刺激が有効である。

細胞内刺激のアプローチとしては、長らくガ ラスピペット電極を用いた電気生理学的な手法 が行われてきた。しかし電荷注入のために細胞 膜に形成する孔の大きさは、細胞の 1/10 程度 と大きく,機械的損傷により細胞はやがて死滅 してしまう。近年では細胞体に密着させたナノ ピラー電極から電流を流し、細胞膜に数 nm の 孔(ナノポア)をあける細胞内刺激が試みられ ている (電気穿孔)。孔の大きさは細胞膜に存 在する膜貫通小孔(膜タンパク質)と同程度で あるため、機械的損傷を抑えることができる。 しかし、電気穿孔であけた孔は膜の自然修復に よって20分以内に塞がるため、長時間の連続 した刺激はできない。以上のように、神経イン タフェースに細胞内刺激を適用するには、細胞 内への長時間安定したシグナル伝達系の構築が 課題となっている。

そこで本研究では生体中の神経系におけるシ グナル伝達系の一つである電気シナプスを模し た系を構築し、上記の課題解決を図る。電気シ ナプスでは、細胞間が膜タンパク質によるナノ ポアで連絡されており、ナノポアを介したイオ ン電流によって細胞間での高速な信号伝達が行 われる。したがって、この電気シナプスの「膜 タンパク質に支持されたナノポア構造」を模倣 することにより、安定したシグナル伝達系を構 築できると考えられる。一方で膜タンパク質は 生体中で分解されやすく、合成も煩雑である。 そこで膜タンパク質より化学的分解に強いナノ サイズの管状構造体を細胞膜に挿入することで、 長時間の細胞内刺激を実現する電気シナプス

図1 提案手法の概要

- 1 -

型電極(図1)を提案する。管状構造体として 注目したのが,単層カーボンナノチューブ (CNT)である。CNT は,1)機械的・化学的 に堅牢な管状構造体であり,2)直径 1~2 nm という孔の大きさによって細胞の機械的損傷を 抑えたナノポアを細胞膜に形成できる。

したがって本研究では,カーボンナノチュー ブ(CNT)を用いたシグナル伝達系を実現し, 細胞内刺激によって刺激閾値を下げて電気分解 の問題を解決する電気シナプス型の微細電極の 実現を目的とする。

その成果は,神経インタフェースによる視覚, 聴覚,触覚といった感覚機能の高度な再現を可 能にし,人間と機械の調和を促進することがで きる。

[研究の内容,成果]

提案手法の実現に向け,以下3点の実験に取 り組んだ。

- A) CNT 挿入が細胞膜形態に及ぼす影響の 評価
- B)細胞・電極間を連結する DNA 管状構造 体の構築
- C)接着細胞の位置制御のための培養基板の
 作製
- 以下にそれぞれの詳細を示す。

A) CNT 挿入が細胞膜形態に及ぼす影響の評価 背景

提案手法で用いる CNT は細胞膜・人工細胞 膜を崩壊・変形させる場合がある。これらの現 象は数百 nm~数 µm の長さの CNT にて報告 されてきた。一方で膜にナノポアを形成する CNT は,脂質による被覆と数~数+ nm 長へ の切断がなされており,膜への挿入とそれに伴 う膜への転移の過程が異なるとされている。そ のためナノポアを形成可能な CNT は既存の CNT と違った膜との相互作用をすることが予 想される。しかし CNT が膜形態に及ぼす影響 についての研究報告はない。そこで、ナノポア 形成 CNT が膜形態に与える影響を評価するた め、細胞膜モデルに利用される巨大人工細胞膜 小胞(giant unilamellar vesicle; GUV) に CNT を曝露し、膜形態変化を蛍光顕微鏡によって評 価した。

手法

CNT の挿入による膜形態への影響を評価す るために,作製した GUV に CNT を曝露し, 蛍光顕微鏡で膜の形態を観察した。

CNT は数~数十 nm の長さに切断するため に CNT をリン脂質(1,2-dioleoyl-sn-glycero-3-phosphocholine; DOPC) とともに水溶媒中 で超音波破砕した。両親媒性であるリン脂質の 表面吸着によって疎水性の CNT は水溶媒中に 分散する。GUV は、ポリビニルアルコール (PVA) ゲルを用いたポリマーフィルム水和法 を用いて作製した。まず, 5.0 w/w% PVA 水溶 液 50 µL をカバーガラス上に広げ、塗布した PVA ゲルを 50℃ で 2 時間以上乾燥させた。次 に、乾燥したゲル膜上に脂質溶液 10 µL を塗布 した。脂質溶液は、クロロホルム中1.0 mg/mLの DOPC に対し, モル比 100:1 にな るように蛍光色素標識脂質(Texas Red[™] 1.2dihexadecanoyl-sn-glycero-3-phosphoethanola mine, triethylammonium salt; Texas Red DHPE) を混合した。その後カバーガラスを真空チャン バ内で15分間静置し、残留溶媒を完全に蒸発 させた。最後に 10 mM HEPES (pH 7.3) を 150 µL 加え, 脂質を水和させて GUV を作製し た。

観察の際は、 3.0μ L の GUV 溶液を観察用 チャンバに加えた後、 1.0μ L の CNT 分散液を チャンバに加え、CNT を GUV に曝露させた。 撮影には、共焦点スキャナユニット (CSU-X1, Yokogawa Electric) に接続した蛍光顕微鏡 (IX70, Olympus)を用いた。使用した対物レ ンズの倍率は 10 倍である。561 nm のレーザー で Texas Red を励起し、CCD カメラ (BU-60, BITRAN) で蛍光を検出した。画像は、CNT 曝露後 29 分間, 10 秒/フレームの速度で記録 した。

結果

蛍光顕微鏡観察の結果. 図2に示すように当 初球形であった GUV が時間の経過とともに扁 平な形状に変形し、最終的には二つ以上の小胞 が連結した形状に変形した。この変形を, GUV を楕円近似した際の長軸と短軸のアスペ クト比で定量評価した結果を図3に示す。図3 は各 CNT 濃度における GUV の平均アスペク ト比の時間変化のグラフである。横軸は CNT 曝露後からの経過時間を示している。CNT の 曝露によって変形が誘引されたことがわかった。 さらにこの変形を膜全体の弾性エネルギによる 膜変形モデルと比較することで, GUV の膜面 積と曲率の増加が CNT の膜挿入により発生し ていることが示唆された。このことからナノポ ア形成 CNT では、CNT や CNT に付着した脂 質分子の膜への挿入が変形に寄与していること

図2 CNT 曝露による変形 GUV の蛍光顕微鏡画像^[1]

図3 GUVの平均アスペクト比の時間変化^[1]

が考えられる。以上により GUV への CNT 組 み込み時における膜変形を制御するための知見 を得ることができた。

B) 細胞・電極間を連結する DNA 管状構造体の構築

背景

CNT の曝露が膜変形を誘引することを考慮 すると、他の材料で作製した管状構造体も同様 の膜変形を誘引して、シグナル伝達系を実現で きない可能性がある。DNA はその塩基対の特 異的な水素結による管状構造体の形成および、 膜へのナノポア形成が可能であることが知られ ている。そこで、本実験では、電極側と細胞側 を接続できるよう、互いに連結する一対の DNA 管状構造体を作製し、その性能について 評価した(図4)。

図4 作製した DNA ナノポアの概略図^[2]

手法

DNA 管状構造体は、先行研究(Göpfrich, et al., 2015)の構造に基づき、核酸塩基間の水素 結合を介して6本のらせん束構造を形成する9 本の一本鎖 DNA で構成された。さらに一対の DNA 管状構造体(A^c, B^c)を互いに接続する ために、それぞれの端部に相補的な配列の一本 鎖 DNA である粘着末端を用意した。また A^c には、B^cとの連結前での物質透過を阻害する ために、一本鎖 DNA による蓋(Lock)を用 意した。Lock によって閉塞された A^c(A^c_{lock}) は、B^cと混合すると、Lock を放出し B^cと連結

図5 SUV 間の Na⁺透過測定における sodium green の 蛍光強度時間変化^[2]

するように設計した。

A^c, B^cの連結と物質透過性について評価す るため、それぞれの DNA 管状構造体を挿入し たサブミクロンサイズの人工細胞膜小胞 (large unilamellar vesicle: LUV) グループ間に おける Na+透過を, Na+の蛍光指示薬である sodium green を用いた測定で評価を行った (図5内イラスト)。まず A^{c} または A^{c}_{lock} を, 300 mM NaCl を内包した LUV (送信 LUV) と体積比1:1で混合した。同様にB^cを、それ ぞれ 10 µM sodium green, 300 mM KCl を内包 した LUV (受信 LUV) と混合した。混合中、 Na⁺は A^cからのみ漏出するため, A^c_{lock}を組み 込んだ LUV の Na⁺濃度は A^cを組み込んだ LUV よりも高くなる。30分の静置後,等量の 送信側および受信側 LUV を混合した。送信・ 受信 LUV が A^cと B^cの連結により接続される と、Na⁺が送信 LUV から受信 LUV へ伝達さ れる。A^clockを組み込んだLUV は A^cを組み込 んだ LUV より内部 Na⁺濃度が高く, sodium green の蛍光強度のより大きな増加として反映 される。蛍光強度は蛍光分光光度計によって計 測した。

結果

図5に sodium green の蛍光強度の時間変化 を示す。予想どおり、 A^{c}_{lock} を組み込んだ受信 LUV は 20±4.4 ポイントの蛍光強度増加を示 した。これは、 A^{c} のある受信 LUV の 14±3.7 ポイントの蛍光強度増加,および DNA 管状構 造体を含まない受信 LUV の 10±3.2 ポイント の増加よりも高かった。別途行った透過型電子 顕微鏡観察において,A^cと B^cの連結による LUV の融合が観察されなかったため,sodium green の蛍光強度増加は小胞融合に寄与してい なかった。すなわち以上から,DNA 管状構造 体が,互いに連結し隣接する LUV を介して直 接的な分子伝達経路を構築したことを実証でき た。今後は,DNA 管状構造体の膜形態への影 響を評価する必要がある。

C) 接着細胞の位置制御のための培養基板の作製背景

提案手法で細胞刺激を行うには,電極近傍ま で細胞を移動させる必要がある。接着細胞の位 置制御技術の1つに,マイクロサイズの細胞培 養基板を動かすことで細胞位置を制御するもの がある。基板は水流や機械的刺激によって制御 可能であるが,制御が困難であり,汚染の可能 性がある。そこで本研究では磁力で接着細胞の 位置を容易に制御可能な基板を作製した。磁性 粒子を含有させることで磁性を付与した培養基 板上で細胞を培養することにより,基板位置の 外部磁場制御が可能である(図6)。

手法

培養基板にはポリジメチルシロキサン (PDMS)を、磁性粒子にはマグネタイト粒子 (EM Japan)を使用した。まず PDMS 主剤と 硬化剤を 10:1 の割合で混合して予備硬化溶液 を調製した。カバーガラス上に型を置き、細胞 培養基板と磁性細胞培養基板の予備硬化溶液を 流し込むことで基板を作製した。作製した基板 に対し,518 mT のネオジム磁石を近傍に設置 し,2% w/v Pluronic F-127 溶液中で磁性培養 基板の磁気反応性を調べた。

さらにこの基板表面をポリドーパミンとコ ラーゲンでコーティングすることで PDMS の 細胞接着性を向上させた。接着細胞として, C2C12 マウス線維芽細胞をコーティングした 基板上に播種した。成長培地には、ウシ胎児血 清 10%, ペニシリンストレプトマイシン1% を含む D-MEM (High Glucose)を利用した。 細胞播種の翌日,細胞を固定し、PhalloidiniFluor 555 Reagent と DAPI を使用して F-ア クチン染色と核染色を行った。観察には、正立 共 焦 点 蛍 光 顕 微 鏡 (LSM780, Carl Zeiss Microscopy)を使用した。

結果

図7は磁性培養基板に磁力を(a)上面と (b)底面に加えた際の画像である。磁石を上 に置いた場合(図7(a))、磁性培養基板の場所

図7 磁性基板の (a) 上面, (b) 底面に磁力印加した 際の画像⁽³⁾

(赤:F-アクチン,青:細胞核)

図8 磁性培養磁性培養基板上で培養した接着細胞の 共焦点蛍光顕微鏡像^[3] は上に移動し,磁石を下に置いた場合(図7 (b)),磁性基板の場所は下に移動した。

図8に磁性基板上で培養した C2C12 細胞の 蛍光顕微鏡画像を示す。図より磁性基板上で細 胞接着と増殖が観察された。以上より磁性基板 上で細胞培養することで,磁力で細胞位置を制 御可能であることが示された。

[今後の研究の方向,課題]

本研究は高性能な神経インタフェースの実現 に向け,カーボンナノチューブを利用した電気 シナプス型電極を提案した。これまで,提案手 法の実現に向け,A)CNT挿入が細胞膜形態 に及ぼす影響の評価,B)細胞・電極間を連結 するDNA管状構造体の構築,C)接着細胞の 位置制御のための培養基板の作製の3つの要素 技術に取り組んだ。一方で提案手法を用いた神 経細胞の刺激がまだ実現できていないため,今 後は上記の要素技術をもとに研究を継続し,提 案手法の実現を目指す。

[成果の発表, 論文など]

- [1] <u>菅野翔一朗</u>, 彭 祖癸, 榛葉健太, 宮本義孝, 八 木 透:脂質二重膜への超短カーボンナノチューブ 挿入が及ぼす膜形態への影響, 電気学会論文誌 C (電子・情報・システム部門誌), Vol. 144, No. 5, pp. 424-430, May 2024
- [2] Zugui Peng, <u>Shoichiro Kanno</u>, Kenta Shimba, Yoshitaka Miyamoto and Tohru Yagi: Synthetic DNA nanopores for direct molecular transmission between lipid vesicles, Nanoscale, Vol. 16, Issue 25, pp. 12174–12183, Jun 2024
- [3] Yuya Shimomura, <u>Shoichiro Kanno</u>, Kenta Shimba, Yoshitaka Miyamoto and Tohru Yagi: Position-controllable cell culture substrate for adherent cells, 2023 15th Biomedical Engineering International Conference (BMEiCON), Nov 2023