体動で発電する生体適合性エネルギーハーベスト素子の開発

		2231022					
6	研究代表者	大阪大学 産業科学研究所 先進電子デバイス研究分野	特任助教	野	\boxplus	祐	樹

Development of biocompatible body-movement energy harvesters

[研究の目的]

我が国では少子高齢化社会の到来を控え,こ れまで以上に個人の健康維持管理の為の生体情 報のモニタリングや高度医療行為が重要な社会 課題になっている。近年では脳波計測器や心臓 のペースメーカーが小型化することで,非侵襲 的に生体に装着したり侵襲的に埋め込むことに よる患者への肉体的・精神的負担が軽減されて きている。一方で電源に関してはセンサ回路と 比較して大きくて硬い二次電池が必要であり, また充電の手間も必要である。日常的に利用す る医療機器においては,利便性の観点から電源 は解決すべき課題の一つである。そのため,人 の行動的負担や心理的負担を軽減可能な,次世 代型電源を実現することで人間と機械の調和の 促進に貢献することができる。

本研究の目的は、人体の動きから電力を獲得 するためのエネルギーハーベスト素子の実現を 目指し、機械的伸縮性と生理的安全性に優れた 電極と絶縁体を用いて摩擦帯電素子を構築し、 その発電特性を評価することである。具体的に は申請者が開発した、引張に対する抵抗変化が 世界最高レベルで小さく、且つ生体適合性の高 い金で構成される金ナノワイヤネットワーク電 極を用いることで実現する。これにより心臓 ペースメーカーなどで使われる重い・かさ張 る・交換や充電の負担がある電池に対して、軽 い・伸びる・安全・常時発電が可能な新しい電 源を創造する基盤研究となることを目指した。

[研究の内容,成果]

・金ナノワイヤネットワーク電極からなる摩擦 帯電素子の作製概要

金ナノワイヤネットワーク電極からなる摩擦 帯電素子はワイヤ合成.吸引濾過.レーザーア ニール, 高分子コーティングを組み合わせた作 製技術を用いて作製した。具体的には研究代表 者が開発した直径 30-80 nm. 長さ約 20 µm の 金ナノワイヤ水分散液をポア径 400 nm 以下の 親水性のろ紙に対して吸引ろ過を行う。その後 レーザーを照射することで、ナノワイヤ間の融 合を行い、キャリヤの伝導パスを増加させ、 シート抵抗の低減化を図る。最後に生体適合性 の高い有機高分子の溶液をろ過することで、高 分子がコーティングされた金ナノワイヤネット ワーク電極を作製する(図1)。キャラクタリ ゼーションは4探針法による IV 特性. FTIR-RAS 分光分析,電子顕微鏡による形状像と元 素分析 (SEM-EDS) を行なった。発電特性は

図1 金ナノワイヤネットワーク電極からなる摩擦帯電 素子の作製概要 ステッピングモーターを備えた一軸加振器で振 動を印加し,自作プログラムで制御されたエレ クトロメータで電荷,電圧,電流を評価した。

・ナノワイヤのレーザーアニールによるシート 抵抗の低減

ナノワイヤネットワーク電極の導電性(シー ト抵抗)は、発生した電荷の取り出し効率に重 要である。ナノワイヤネットワークは一次元ナ ノワイヤの集積体である。一本のワイヤは直径 30-80 nm の金属であるためワイヤー本の抵抗 はバルクの金とほとんど変わらないと考えられ る。しかしワイヤが集積したネットワーク構造 ではあるワイヤから他方のワイヤへ電子が伝導 する必要があり、この際の抵抗が大きいことか ら、ワイヤ間の抵抗が電極全体のシート抵抗を 決める。

そこでワイヤ間を「溶接」することでワイヤ 間伝導の抵抗を低減する必要がある。ここでは 波長 532 nm のパルスレーザー光を照射するこ とでワイヤ間の溶接を試みた。結果,図2に示 すように,照射前のワイヤ交点と比較し,照射 後はワイヤ間に瘤状の構造が形成されているこ とが確認できたことからワイヤ間が溶接された ことが示唆された。さらに4端子法で金ナノワ イヤのシート抵抗を計測したところ,レーザー 処理前は 141 Ω/sq である一方で,レーザー照 射後は最大で 31 Ω/sq まで減少し,約 78% も 抵抗を抑制できることが明らかとなった(図 3)。

これらの結果から作製した金ナノワイヤネッ トワーク電極はレーザーを用いることでワイヤ

図2 レーザー照射前後における金ナノワイヤ ネットワーク電極の SEM 像

図3 レーザー照射前後における金ナノワイヤ ネットワーク電極の IV 特性

間の溶接が可能であり,これにより電子の伝導 パスが形成されることでシート抵抗を低減でき ることが明らかとなった。

・ナノワイヤ表面の高分子コーティングとその キャラクタリゼーション

摩擦帯電素子においては金属表面にコーティ ングされた絶縁体を摩擦することで電荷が蓄積 され,静電誘導により金属に電荷が誘起される。 生体の動きを利用した発電素子を実現するため には,絶縁体にも生体適合性を有する材料を用 いる必要がある。そこで本研究では正電荷を蓄 積する傾向がある絶縁体として甲殻類の殻を構 成する成分であるキトサンのオリゴマーを,負 電荷を蓄積する傾向がある絶縁体としてコンタ クトレンズ等に用いられるシリコーンの一種で あるポリジメチルシロキサン (以降 PDMS) を採用した。これらの溶液をレーザー処理を行 なった後の金ナノワイヤに塗布することで金ナ ノワイヤネットワーク表面に絶縁体のコーティ ングを行った。

ナノワイヤ表面にコーティングされた高分 子をキャラクタリゼーションするため、フー リエ変換赤外分光法の一つである高感度反射 法(FTIR-RAS)と電子顕微鏡で評価した。 FTIR-RASはp偏光した赤外光を金属表面に 照射することで表面から数nmの分子の情報を 得ることができる極めて表面敏感な分光法であ る。図4に示す通り、コーティング前の金ナノ ワイヤは特に主立ったピークが観測されない一

図4 (a) キトサンオリゴマー及び (b) PDMS でコーティ ングされた金ナノワイヤのキャラクタリゼーション。 分子構造, FTIR-RAS スペクトル, SEM-EDS 像を 示す。

方で、コーティングした金ナノワイヤはそれぞ れキトサンオリゴマー、PDMSの分子振動に 由来するピークを観測することができた。これ により厚み数 nm の高分子が金ナノワイヤ表面 にコーティングされていることが示唆された。

さらに SEM の EDS を用いて元素分析マッ ピング分析を行なった。結果,形状像で示すナ ノワイヤの位置に金ナノワイヤ由来の金とそれ ぞれの高分子であるキトサンオリゴ糖と PDMS の構成元素の酸素とケイ素の信号を確 認することができた。これら FTIR-RAS と SEM-EDS の結果から絶縁体として機能する高 分子は確かに金ナノワイヤの表面に存在するこ とが明らかとなった。

・表面電位

絶縁体をコーティングした金ナノワイヤの表 面電位を計測し帯電する電荷の極性を検討した。 先述したようにキトサンオリゴマーは相対的に 正電荷を、PDMS は相対的に負電荷を蓄積し 易い傾向があることが先行研究により示唆され ている。そこで、作製した素子の表面を表面電 位計を用いてその極性を検討した。キトサンオ リゴマー被覆金ナノワイヤに対しては PDMS を、PDMS 被覆金ナノワイヤに対してはキト サンを用いて摩擦し, 表面電位計に接近させて 数分静置した。その結果,図5に示すようにキ トサンオリゴマー被覆金ナノワイヤ、PDMS 被覆金ナノワイヤの表面はそれぞれ正電位、負 電位に帯電しており、その電位が維持されてい る様子を観測した。この結果から各素子の絶縁 体は先行研究で示唆された極性に一致する電荷 を蓄積する傾向にあり、摩擦帯電素子として互 いに逆極性の特性を有することを確認した。

図5 各高分子でコーティングされた金ナノワイヤ ネットワーク電極の表面電位

・単極子の特性

絶縁体をコーティングした電極素子は単極子 の摩擦帯電素子として考えることができる。単 極子素子は片側をグランドに落とすことで電極 や絶縁体の特性を評価することができる。ここ では電極としてレーザー処理前の金ナノワイヤ, レーザー処理後の金ナノワイヤの2種の単極子

素子を作製し, 電極構造が出力特性に与える影響を検討した。1 軸加振機を用いて, 変位距離 1 mm, 接触周波数1,3,10 Hz にて接触分離動 作を行なった。周波数においては人の肘や膝間

接の一般的な動作周期帯を参考に選定した。

絶縁体としてキトサンオリゴマーを電極に コーティングした場合の結果を図6(a) に示す。 ここでは対向接触材料として回路に接続してい ない PDMS シートを用いた。結果,接触周波 数が1,3,10 Hz と高速になるにつれ出力電圧 が向上する様子を確認できた。実質的な発生電 圧を示す電圧実効値を比較すると,10 Hz にお いてはレーザー照射前は 0.121 V であったが, 照射後は 0.327 V であり約 170% 向上すること が明らかとなった。同様に 1 Hz,3 Hz におい てもそれぞれ 57%,96% の電圧実効値の向上を 確認できた。

絶縁体として PDMS を電極にコーティング した場合の結果を図 7(b) に示す。(a) と同様 に接触周波数が 1, 3, 10 Hz と高速になるにつ れ出力電圧が向上する様子を確認できた。キト サンオリゴマーと同様にレーザー照射前後の電 圧実効値を計算すると, 1, 3, 10 Hz でそれぞれ 約 24%, 30%, 44% 向上することが明らかとなっ た。

キトサンオリゴ糖, PDMS のいずれの場合 においてもレーザー照射前後で電圧の向上が確

図7 PDMS 被覆金ナノワイヤ単極子素子の電圧特性

認できた。これは、レーザー照射によりシート 抵抗が下がることで、摩擦の過程で発生した電 荷が静電誘導により、外部回路に取り出される 際のロスが減少したことに由来すると考えられ る。

·発電特性

上記までの実験で得られたキトサンオリゴ マー被覆金ナノワイヤ単極子と PDMS 被覆金 ナノワイヤ単極子を組み合わせることで二極子 素子を作製し、その発電特性を評価した。ここ ではステッピングモーターからなる一軸加振器 を用い、周波数1Hz、加速度1m/s²の条件で 2つの単極子素子を互いに接触分離させること で行った。キトサンオリゴマー被覆金ナノワイ ヤ単極子を正極, PDMS 被覆金ナノワイヤ単 極子を負極しとして計測した。図8は1800秒 間の接触分離過程における電荷の蓄積を示した グラフである。開始直後から挿入図に示すよう に素子の接触分離に伴う電荷の移動が始まり. 1000 秒経過するころには電極に 50 nC が, 1800 秒では 80 nC に相当する電荷が電極に蓄 積されていることが明らかとなった。同様の傾 向は蒸着金を電極とした他の摩擦帯電素子で も報告されており(ACS Nano 2020, 14, 17565-17573), 開発した金ナノワイヤからなる二極子 素子が確かに摩擦帯電素子として電荷を発生し.

図8 キトサンオリゴマーと PDMS 単極素子からなる 二極子デバイスの電荷の蓄積過程

蓄積することが証明された。一方で本研究で開 発した素子は 1800 秒経過しても飽和する傾向 が見られなかった。これは一般的な電極と比較 してナノワイヤが一次元性であるため、その表 面積に由来して静電容量が大きくなっているこ とが考えられる。

その一方で接触分離一回あたりの電荷移動量 は約2nCと蒸着金を用いた先行研究と大きな 違いはなかった。ナノワイヤの表面積が二次元 蒸着膜より大きいことを考慮するとより大きな 電荷が移動すると期待される。恐らく電極の シート抵抗が蒸着金より高いために電荷の取り 出し効率が低下したと考えられ,抵抗の更なる 低減が求められる。

最後に開放電圧と短絡電流の計測を行った。 加振条件は同様に周波数1Hz,加速度1m/s² で行った。図9に示すとおり,開放電圧は最大 約で1.8 V,短絡電流は約65 nA であった。さ らに実効値に換算すると電圧 1.12 V,電流 7.54 nA を生成することができた。

本研究では機械的伸縮性と生理的安全性に優

図9 キトサンオリゴマーと PDMS 単極素子からなる 二極子デバイスの開放電圧と短絡電流

れた金ナノワイヤからなるネットワーク電極と 有機高分子絶縁体を用いて摩擦帯電素子の構築 とその発電特性を評価した。提案した新規構造 は最終的に発電素子として機能することが証明 された。今後は発電効率の更なる向上を行い, 実際に人に装着した状態で発電評価することで, 社会実装に向けて取組んでいく。

[成果の発表, 論文など]

- ・金ナノワイヤを用いた摩擦発電素子の開発,大島元
 太,野田祐樹,豊嶋尚美,高根慧至,関谷毅,第
 84回応用物理学会秋季学術講演会
- Performance Enhancement of strechable Gold Nanowire Electrodes by Structual Reformation, Takane Satoshi, Noda Yuki, Toyoshim Naomi, Uemura Takafumi, Sekitani Tsuyoshi, 7th International Conference on Advanced Electromaterials
- Novel Structural Concept for High-Performance Gold Nanowire Stretchable Electrode Toward Ultra-Flexible Biomedical Applications, Takane Satoshi, Noda Yuki, Toyoshim Naomi, Uemura Takafumi, Sekitani Tsuyoshi, 2023 MRS Fall Meeting & Exhibit