無給電状態で静的および動的な 圧力センシングが可能な編み手袋の開発

2241002

研究代表者 京都工芸繊維大学 繊維学系 准教授 石 井 佑 弥

[研究の目的]

『人間と機械(特にロボット)の調和の促進』を思い描く上で、人間と機械の物理的接触を伴うヒューマンマシーンインターフェース (HMI) は欠かせない。特にこのような HMI には、人間がロボットに触れた、握ったなどを電気信号で検知する電子スキンも含まれる。このような HMI ではこれまでに、MEMS 圧力センサなどの従来の無機系のデバイス群や、フレキシブルハイブリッドエレクトロニクスに代表される機械的に柔軟な樹脂系の薄膜フィルム状デバイス群が用いられてきた。

他方で、糸からなる編物、織物、組物(ここでは、テキスタイルと総称)は、古来より人間と常時物理的接触を伴いながら愛用されてきた。これは、テキスタイルの肌触りの良さやしなやかに曲がる点など、人間目線からの優れた点を有するためと考えられる。したがって、テキスタイルからなる HMI は、人間と機械の物理的接触が伴う利活用において、優れた適合性を示す。筆者は、無機系のデバイス群と樹脂系の薄膜フィルム状デバイス群と並ぶ第三極として、テキスタイルからなる HMI が積極的に利活用される未来を思い描く。

テキスタイルに電子的な機能を付与し利活用 しようとする,電子テキスタイルが知られてい る。筆者は、繊維系三学会が共同運営するス マートテキスタイル研究会の副委員長(2025 年4月現在)として、この電子テキスタイルの 分野に携わるが、テキスタイルを電子機器として開発、利活用するときの技術的なハードルの高さに直面し、この研究分野事態が低迷しているのが現状である。特に、無機系のデバイス群や樹脂系の薄膜フィルム状デバイス群と比べると、再現性や精度がどうしても劣ることが課題である。

上記の課題は認めつつも、テキスタイルと人間の親和性は特筆すべきであるため、キラーデバイス群の研究開発が電子テキスタイルの研究分野、業界から渇望されている。そこで本研究では、このキラーデバイスの有望な一例として、「無給電状態で静的および動的な圧力センシングが可能な編み手袋」を発案し、この開発を世界に先駆けて推進した。

「無給電状態で静的および動的な圧力センシングが可能な編み手袋」は、例えばロボットハンドがこの手袋を着用し、人間が触れた(タッチ)、握った(圧力印加)を無給電状態にもかかわらず電気信号として検出することを目指した。さらに、圧力を印加したその瞬間の(動的な)検知のみならず、静的な圧力印加状態での検知も可能とすることも目指した。これら双方を同時に実現する電子テキスタイルの基礎的な動作を、申請者らは世界に先駆けて発明および論文発表している「20」とかしこの報告は、「無給電動作可能なスペーサーファブリック型タッチ/圧力センサ」(図1)を報告しており、5層構造の複雑な編物であるため、編み手袋のような複雑な構造体への1回での編み込みは困難で

図1 筆者らが新規開発した無給電動作可能なスペーサーファブリック型タッチ/圧力センサの(a)概説図と(b)断面写真

ある。そこで本研究では、このスペーサーファブリック型タッチ/圧力センサの構造を抜本的に見直し、HMIを見据えた編み手袋状構造に発展させる。

ここで、類似技術としてこれまでに、テキスタイル型のタッチ/圧力センサとして、「①圧電方式と摩擦帯電方式」、「②圧抵抗方式と静電容量方式」が主に報告されていた。しかし、①については無給電状態でのセンシングは可能であるものの、静的な圧力印加状態の圧力センシングは可能であるが、無給電状態での圧力センシングは可能であるが、無給電状態での圧力センシングは原理的に困難である。したがって本研究では、無給電状態で静的および動的な圧力センシングが可能なユニークなテキスタイル型のタッチ/圧力センサ(編み手袋)を開発する。

[研究の内容,成果]

これまでに開発した、5層の編み構造からなる「無給電動作可能なスペーサーファブリック型タッチ/圧力センサ」(図1)の特性評価を深めていったところ、ヒトが触れる側の非導電性糸層(綿糸層)と導電性糸層の2層だけでもタッチおよび圧力センシングが可能であることが分かってきた。このため、動作実証の第一検討として、非導電性糸層と導電性糸層の2層のみからなる平編物を作製した。

導電性糸には、導電性銀メッキミシン糸 (AGposs[®], 143/2 dtex, ミツフジ株式会社) を用い、非導電性糸には綿 50%, アクリル 50% の紡績糸 (ドラロン綿[®], 295/2 dtex) を

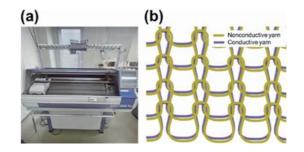


図2 (a) 横編機の外観と(b) プレーティング編みの概説図

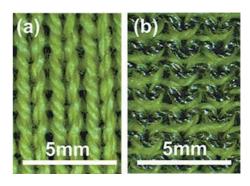


図 3 編みあげた 2 層構造の編物のマイクロスコープ像: (a) 表面, (b) 裏面

使用した。横編機 (SWG091N2, 株式会社 島精機製作所) [図 2 (a)] を用いたプレーティング編み [図 2 (b)] により, 非導電性糸がヒトの触れる側, 導電性糸がその反対側に位置するように編みあげた。

図3に実際に編みあげた2層構造の編物のマイクロスコープ像を示す。表面では導電性糸が非導電性糸で覆われており、裏面では導電性糸どうしが接触している。これにより、非導電性糸層と導電性糸層の2層構造が実現していることが分かる。

この 2 層構造の編物にヒトの指が触れたとき、および押し込んだときの導電性糸層から出力される電圧を測定した(図 4)。当該編物にヒトの指が触れると、無給電状態にもかかわらず周波数約 60 Hz の交流電圧が出力された(京都府京都市内で測定)。さらに、指で当該センサを押し込むと、タッチしたときよりも出力電圧が増加した。なお、このときの温度は 25.3 \mathbb{C} 、湿度は 64.2 %RH であった。この結果から、当該編物は出力電圧の大小によってヒトの指によるタッチおよび押し込み(圧力印加)を無給電

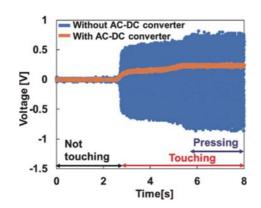


図4 2層構造の編物にヒトの指が触れたとき、および 押し込んだときの導電性糸層から出力される電圧

状態で検知できることが示された。また、ヒトの指が接触している間、常に電圧が出力されている。したがって、当該センサは印加圧力が変化しない静的状態の連続センシングも可能であることが示された。なお、この交流の出力電圧は、ダイオードブリッジ整流器とコンデンサからなるシンプルな AC-DC コンバーター回路を出力側に付加することにより、直流電圧としても取り出すことも可能である。

無給電状態にもかかわらず当該編物から交流 電圧が出力されるメカニズムとして次のような モデルを考えている¹⁾。商用交流電源で動作す る電気機器や配線ケーブルなどから放散された 電磁波が,人体内で商用交流電源の周波数の静 電誘導が生じさせる。この人体内での静電誘導 が,非導電性の鞘糸層を隔てて,導電性の芯糸 層に静電誘導を生じさせる。この芯糸層での静 電誘導が,交流電圧として出力される。印加負 荷の増加に伴う出力電圧の増加の原因について は,負荷の増加に伴う鞘糸の厚みの減少や抵抗 値の減少などを考えている。

2層構造の編み部分(タッチおよび圧力センシング部分)を10箇所導入して1回で編み上げた、無給電状態で静的および動的な圧力センシングが可能な編み手袋を図5に示す。手型に良好に着用させられる構造に至るまで、編みの条件を試行錯誤した結果、良好に着用させられる手袋が出来上がるに至った。この編み手袋の動作検証をしたところ、無給電状態で静的およ

図5 2層構造の編み部分を10箇所導入して編み上げた 無給電状態で静的および動的な圧力センシングが 可能な手袋

び動的な圧力センシングが可能であることが明らかになった。しかし、サンプル数を増やして動作検証を進めたところ、導電性の糸が、ヒトが触れる非導電性の糸側の表面に露出している箇所が散見されることが分かってきた。この課題を改善するために、編み条件を変化させるなどして、導電性の糸が非導電性の糸側の表面に露出しないように、編みの条件を検討していったものの、完全に導電糸の露出を抑える編み条件には至らなかった。このため、プレーティング編みを用いた2層編み構造自体を見直し、代替法を検討した。

上述の2層構造と等価な構造を有する芯鞘導電糸(図6)を企業様のご協力により、開発およびご提供いただいた。この芯鞘導電糸は、導電性の銀メッキ糸を芯糸として、この周りを覆うように非導電性の綿糸で撚られた芯鞘2層構造の撚糸である。すなわち、これまで導電性の糸と非導電性の糸の2本をプレーティング編み

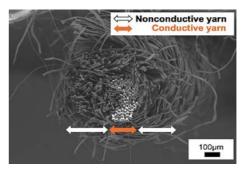


図6 芯鞘導電糸の走査型電子顕微鏡像3)

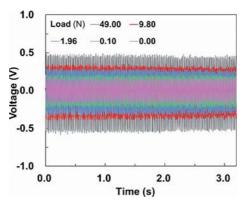


図7 ヒトが触れた状態の金属平端子を用いて,異なる 負荷を芯鞘導電糸に印加したときの芯糸で生じる 出力電圧³⁾

して、ヒトが触れる側に非導電性糸層、その反対側に導電性糸層を形成した編物 2 層構造を、1 本の糸の内部で実現している。この芯鞘導電糸を使用することにより、導電性の糸が非導電性糸層から露出する問題が解決された。加えて、1 本の糸で完結するために、編み上げられる構造の自由度が大きく広がった。

図7に、ヒトが触れた状態の金属平端子を用いて、異なる負荷を芯鞘導電糸に印加したときの芯糸で生じる出力電圧を示す。なお、負荷は当該単糸の短軸方向から垂直に印加した。無給電状態にもかかわらず周波数が約60 Hz の交流電圧が連続して出力されていることが分かった。また、印加する負荷の増加に伴いこの出力電圧の振幅は増加した。以上の結果から、開発した芯鞘導電糸が、無給電状態で静的および動的な連続圧力センシング可能であることが示された。なお、当該芯鞘導電糸に関する特許を前述の企業様と共同出願した。

続いて、前述の芯鞘導電糸のみを編んだセンサ部を7箇所部分的に編んだ編み手袋を作製した(図8)。手型に良好に着用されられる構造に至るまで、編みの条件を試行錯誤した結果、良好に着用させられる手袋が出来上がるに至った。この編み手袋も1回で編み上げることが可能である。芯鞘導電糸で編んだセンサ部に、ヒトの指がタッチし、さらに押し込んだときの出力電圧を図9示す。指がタッチすると、無給電

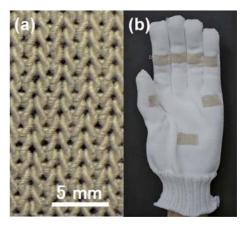


図8 (a) 芯鞘導電糸で編んだセンサ部のマイクロスコープ 像と (b) 芯鞘導電糸のみを編んだセンサ部を7箇所 部分的に編んだ編み手袋の外観⁴⁾

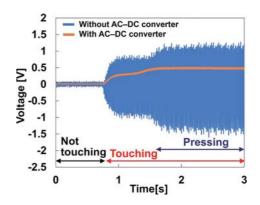


図9 芯鞘導電糸で編んだセンサ部に、ヒトの指が タッチし、さらに押し込んだときの出力電圧⁴⁾

状態にもかかわらず交流電圧が連続して出力された。さらに指で押し込むと、振幅が増加した。なお、この交流電圧の周波数は約60 Hz であり(京都府京都市内で測定)、AC-DC コンバータ回路を介した場合には直流電圧が連続して出力された。また、このときの温度は28.2℃、湿度は48.1 %RHであった。したがって作製した編物が、無給電状態にも関わらず出力電圧の大小で連続して静的および動的な圧力センシングが可能な圧力センサとして機能する可能性が示された。

最後に、作製した編み手袋を木製のハンドモデルに装着して、これとヒトが握手したときの出力電圧を測定した。この結果、7箇所全でで出力電圧が変化し、同時圧力センシングの可能性が示された。

[参考文献]

- 1) K. Tonomura et al. Smart Materials and Structures, 32(3), 035029, 2023.
- 2) 特願 2021-183160, 石井佑弥, ユーアニー, 外村 一樹, 発電部材およびタッチセンサ装置
- 3) 吉田他, 2024 年繊維学会秋季研究発表会, A15, 京都, 2024 年 11 月.
- 4) 梶谷他, 2024 年繊維学会秋季研究発表会, 2F15, 京都, 2024 年 11 月.

[成果の発表, 論文など]

・梶谷芽衣, 曽我部利帆, 宮田千歌, 石井佑弥, 無給 電状態で静的および動的な圧力センシングが可能な

- 編み手袋の開発,2024年繊維学会秋季研究発表会, 2F15,京都,2024年11月.
- ・吉田登, 梶谷芽衣, 宮田千歌, 石井佑弥, 無給電状態で静的および動的な圧力センシングが可能な糸, 2024 年繊維学会秋季研究発表会, A15, 京都, 2024年11月.
- ・曽我部利帆, 梶谷芽衣, 宮田千歌, 石井佑弥, 無給 電状態で踏圧の連続センシングが可能なインソール 型編物の開発, 2024 年繊維学会秋季研究発表会, A17, 京都, 2024 年 11 月.
- 石井佑弥,無給電状態で連続センシング可能な編み 手袋型タッチセンサ、繊維機械学会誌 月刊せんい、 Vol. 78, No. 3, pp. 27-33, 2025.